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Observed large-scale and deep-reaching 
compound ocean state changes over the  
past 60 years
 

Zhetao Tan    1,2, Karina von Schuckmann3, Sabrina Speich    2, Laurent Bopp2, 
Jiang Zhu    4 & Lijing Cheng    1,5 

Multiple climate-related stressors affect the ocean, including warming, 
acidification, deoxygenation and variations in salinity, with profound 
effects on Earth system cycles, marine ecosystems and human well-being. 
Nevertheless, a global perspective on the combined impacts of these 
changes on both surface and subsurface ocean conditions remains unclear. 
Here, applying a time-of-emergence methodology to observed physical and 
biogeochemical variables, collectively referred to as compound climatic 
impact-drivers, we show individual and compound ocean state changes 
have become increasingly prominent globally over the past 60 years. In 
particular, observations show the simultaneous emergence of compound 
climatic impact-drivers in regions spanning the subtropical and tropical 
Atlantic, the subtropical Pacific, the Arabian Sea and the Mediterranean 
Sea. We highlight extensive exposure of different ocean layers to compound 
emergence, characterized by significant intensity, duration and magnitude. 
These results provide a comprehensive framework and perspective to 
illustrate the ocean’s vulnerability to pervasive and interconnected changes 
in a warming climate.

The ocean is vulnerable to a wide range of environmental stressors in a 
warming climate1,2, commonly referred to as ‘climatic impact-drivers’ 
(CIDs)3,4, which include phenomena such as surface and subsurface 
ocean warming, salinity variations, acidification, deoxygenation and 
other changes in relevant biogeochemical variables5. The evolving 
impacts of these CIDs on marine species, habitats and ecosystems, 
and the resulting biological responses6, pose prominent threats to the 
ocean’s overall health and resilience7.

Previous studies have examined the emergence of persistent 
shifts in several individual CIDs in the context of increasing anthro-
pogenic greenhouse gas (GHG) emissions8–11. Simultaneous changes 
in these CIDs potentially amplify persistent pressures on marine life. 

However, previous efforts have been limited to a subset of individual 
CIDs9,10,12, focused on compound extreme events13,14, limited their 
scope to sea surface conditions or specific ocean layers11,13,15,16, or relied 
exclusively on model-derived data11,16. There is thus an urgent need 
for a comprehensive global investigation of simultaneous changes 
based on direct observations in multiple CIDs, hereafter referred to 
as ‘compound CIDs’.

Of particular relevance is which regions have already experienced 
substantial impacts from prolonged compound CIDs from the surface 
to the deep ocean. The temporal and spatial dynamics (that is, when 
and where), as well as the mechanisms underlying such changes (that 
is, how), are also poorly understood. Here we focus on the concurrent 
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BOX 1

Definitions for long-term compound CIDs, their emergence and 
resulting exposure

CIDs have been well defined and studied4. They can provide the 
climate change information of the physical science basis (IPCC 
Working Group I) with its impacts, adaptation and vulnerability 
(IPCC Working Group II), helping assess climate change risk  
across various sectors and spheres4. Following the IPCC  
Sixth Assessment Report, we define CIDs as “physical climate 
system conditions (for example, means, trends, extremes) that 
affect an element of society or ecosystems and their changes  
can be detrimental, beneficial, neutral or a mixture of each  
across interacting system elements and regions”89. However,  
a comprehensive definition of compound CIDs with respect  
to long-term changes remains elusive. In this assessment 
framework, ‘compound CID’ refers to multiple CIDs occurring 
simultaneously, which may have complex relationships and 
interactions, such as through joint relationship90,91, causal 
relationship92,93 and composite relationship94. They may  
exhibit complex interactions that can potentially affect the  
ocean by exacerbating or sometimes reducing the overall  

effects95, thus posing challenges to the ocean27,96,97 (see Fig. 4  
for an example of the composite relationship to the multiple 
effects). Although similar terminologies have been used in 
previous climate change studies92,93,98, precise definitions are 
still lacking. In this framework, the joint relationship refers to 
the case where the change of two or more independent CIDs 
simultaneously influences the change of a dependent CID  
(for example, temperature change together with salinity change 
can lead to changes in ocean density and ocean stratification40). 
The causal relationship here refers to a change in one CID that 
causes a change in another CID (for example, warming can lead 
to deoxygenation due to reduced solubility35). The composite 
relationship refers to the combined effect of multiple causal 
and joint relationships. That is, changes in multiple CIDs may 
collectively affect the ocean and, in turn, induce potential positive 
or negative feedback on a CID. For example, the joint relationship 
between ocean warming and salinization and the causal 
relationship between warming and deoxygenation may indicate 
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emergence of persistent changes (spanning more than 25 years, that 
is, long-term change perspective) by developing a methodology and 
framework to delineate regions that are profoundly affected by pro-
longed and substantial concomitant shifts in compound CIDs, identify-
ing the timing and mechanisms underlying these shifts. Specifically, we 
address four key aspects: (1) the definition of compound CIDs, which 
denote simultaneous changes in multiple CIDs; (2) the determination 
of whether compound CIDs have emerged in the surface and subsur-
face oceanic realms as a consequence of short-term oceanic variability 
over the past six decades; (3) the assessment of the duration, intensity 
and magnitude of emergence of long-term compound CIDs; and (4) 

the evaluation of where and how severely the ocean environment is 
exposed to the emergence of long-term compound CIDs. Our analysis 
is based on various observational datasets and includes assessments 
of the persistent changes in individual CIDs and their collective emer-
gence throughout the oceanic domain.

The compound CIDs framework
Literature on the concurrent change in the ocean climate system uses 
many terms interchangeably, such as multiple stressors3,16,17, (multi-)
hazards18,19 and compound events13,20. The terms ‘multiple stressors’ and 
‘(multi-)hazards’ refer mainly to adverse effects that deviate from the 
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Fig. 1 | Global percentage of emergence as a function of year for individual or 
compound CIDs. a, Surface. b, Epipelagic zone (0–200 m). c, Mesopelagic zone 
(200–1,000 m). d, The same as a but for the global percentage of emergence 
in the year 2023 as a function of depth from 0 to 1,000 m. Here an |SNR| > 1 
threshold is used to calculate the ToE, corresponding to an ~67% confidence 
level. The shaded area represents the data uncertainty (95% confidence interval, 

accounting for instrumental uncertainty, sampling/mapping uncertainty and 
uncertainty due to (multi-)decadal variability in the quantification of the ‘signal’ 
and baseline choice (Methods). The percentage is derived from the ratio of the 
emergence area to the global ocean area. The reference period (baseline) is 
1960–1989 for temperature, salinity and dissolved oxygen, and 1985–1989 for 
surface pH.

changes in the ocean’s energy, water and biogeochemical cycles, 
including marine ecosystems (Fig. 4).

Compound CIDs are illustrated by the simultaneous emergence 
regions, where the ToE of more than one CID can be detected 
(see panel a of the figure in Box 1). These concurrent long-term 
changes may accumulate (or cancel out) synergistic, additive 
and antagonistic effects6,69 from the ocean’s physical level to the 

biogeochemical and biodiversity levels. Considering that the 
emergence can be linked to biota hazard, climate change impacts 
and vulnerability99, ocean exposure to compound CIDs is defined 
on the basis of three emergence metrics: duration, intensity and 
magnitude (see the figure in Box 1)18,19,100,101. Increased exposure may 
reveal some potential climate-driven ocean hotspots associated 
with the emergence of compound CIDs.

(continued from previous page)
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norm. The term ‘compound events’ is often associated with extreme 
events14,21. To differentiate from these terminologies, we use ‘com-
pound CIDs’ to represent the simultaneous and persistent emergence 
of multiple CIDs that may have either positive or negative impacts4,6.

In this assessment framework, we use the time of emergence 
(ToE)10 to detect long-term changes in compound CIDs under warm-
ing. We first identify when and where the signal of an individual CID 
has emerged from the noise level before 2023 (see the figure in Box 1 
and Methods). The long-term change (that is, signal) is quantified by 
applying a 25-year LOWESS filter22 to the global mean time series. The 
background variability (that is, noise) is quantified as the short-term 
(<25 years) variability of the local time series. The ToE is then defined 
as the first year in which the absolute value of the signal-to-noise ratio 
(SNR) exceeds 1 and never falls back to the noise level (also testing the 
impact with the |SNR| > 2; see Methods for details). On the basis of the 
ToE for individual CIDs, we then define regions where multiple CIDs 
emerge simultaneously and refer to them as ‘double emergence’ and 
‘triple emergence’, following the approach that the ToE of more than 

one CID can be detected if the signal of these CIDs has already emerged 
(see the figure in Box 1).

The categories of intensity, duration and magnitude of emergence 
are then defined by using a statistical distribution approach to analyse 
how strong, how long and how fast the signal has changed since its 
emergence (Box 1). Finally, these categories are used to understand 
where and how the ocean environment is exposed (different categories: 
high, medium, low) to long-term climate state changes in compound 
CIDs (see the figure in Box 1). On the basis of the proposed framework, 
we will analyse the changes from the ocean surface to the bottom of 
the mesopelagic zone (0–1,000 m) for four selected CIDs: ocean tem-
perature (T), salinity (S), dissolved oxygen (DO) and surface pH in this 
study (Extended Data Table 1).

Time of emergence of compound CIDs
The ToE has been widely used to detect long-term changes in CIDs23,24, 
stressors25 and climate hazards26, and our analysis shows that different 
CIDs are associated with different timescales. For example, temperature 
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Fig. 2 | Spatial distribution of the time of emergence (ToE) (single, double and 
triple emergence) of compound CIDs in different depth layers. a, Surface layer 
(0 m). b, Epipelagic (0–200 m) zone. c, Mesopelagic (200–1,000 m) zone. The 
white colour indicates no emergence before 2023. Here an |SNR| > 1 threshold 
is used to calculate ToE (~67% confidence level), but regions where |SNR| > 2 
(~95% confidence level) are additionally marked with red dots. White indicates 

no emergence or insignificant emergence before 2023, as defined by the 95% 
confidence interval of data uncertainty (see Extended Data Figs. 8 and 9 and 
Methods). Surface pH emergence (black slashes) is shown separately because 
of a different reference period. Polar regions (beyond 70° N and 60° S) are not 
included due to data limitations.
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and dissolved oxygen have a typical shorter emergence time than salin-
ity to achieve the same global area coverage of emergence, while surface 
pH is the shortest (Fig. 1a,b), consistent with a previous study11. Fur-
ther, we show that a large fraction of the global ocean is exposed to the 
emergence of both single and compound CIDs before 2023 (relative to 
the 1960–1989 baseline). In particular, almost the entire global ocean 
surface (~100%) is exposed to a decrease in pH emerging from the noise 
since 1995 (relative to the 1985–1989 baseline). This is attributed mainly 
to the continuous and increasing emission of anthropogenic carbon 
dioxide, which induces a net positive flux of CO2 from the atmosphere 
to the ocean15. This result is consistent with previous studies15 and is 
robust among different products used (Extended Data Fig. 1).

Long-term changes in other individual CIDs considered here (T, 
S and DO) have emerged since the early 1990s in about 20–60% of the 
global ocean area relative to the 1960–1989 baseline, for both the epipe-
lagic and mesopelagic zones (Fig. 1b,c and Extended Data Figs. 2–4). 
Local significant ocean warming emergence (Extended Data Fig. 2) is 
driven primarily by the enhanced radiative forcing associated with 
the increasing atmospheric concentrations of GHGs27,28, consistent 
with the robust observed acceleration of ocean heating since the 
1960s29. Changes in salinity patterns (for example, salinization in 
the Atlantic and Indian oceans and freshening in the Pacific Ocean; 
Extended Data Fig. 3 and ref. 30) are driven by the intensification of 
the global hydrological cycle, often described as a ‘wet-get-wetter’ 
and ‘dry-get-drier’ paradigm30–32. While salinity is decreasing in most 
ocean basins, increases in salinity in the Atlantic Ocean and the Medi-
terranean Sea are discussed in the context of increasing atmospheric 
transport of fresh water from these regions33. In general, local tem-
perature and salinity changes in the ocean can result from perturbed 
air–sea heat and freshwater fluxes and from the redistribution of the 
temperature and salinity fields due to the transport of ocean prop-
erties and circulation changes34. In addition, ocean deoxygenation 
(Extended Data Fig. 4) could be attributed to ocean warming via the 
causal relationship between temperature and oxygen solubility (nega-
tive correlation), superimposed on increasing warming-induced oxy-
gen consumption in the upper layer6,35. Previous studies on long-term 
trend analysis of individual CIDs (mainly for surface layer) also show 
a similar spatial and temporal pattern36–39. These single-emergence 
patterns are not sensitive to the choices of observational-based data 

products and are consistent with previous estimates (see the discus-
sions of ‘Robustness of the results on the choice of observational data 
products’ in Methods and Extended Data Figs. 5–7).

In the case of double emergence (associated T with S or T with 
DO changes), the percentage is about 7% (~3–10%) from the surface 
layer down to about 32% (~13–48%) at the bottom of the mesopelagic 
zone since the 2000s (with 95% data uncertainty range, using |SNR| > 1 
threshold; Methods). In addition, the global percentage of triple emer-
gence shows an increase at depth along with a decreasing noise mag-
nitude, from about 8% (~6–11%) in the top of the epipelagic zone and 
down to 11% (7–16%) at the bottom of the mesopelagic zone (mainly for 
warming coupled with salinity change and deoxygenation; Fig. 1b–d). 
Here the long-term change of ocean warning in combination with 
salinity change, freshening and deoxygenation can be discussed in the 
context of different types of multivariate relationships between these 
CIDs (Box 1 and Fig. 4). The joint relationship between near-surface tem-
perature and salinity anomalies can induce changes in the ocean den-
sity, affect upper-ocean stratification, modify the mixed-layer depth 
and in turn trigger changes in ocean circulation1,37,40. Ocean processes 
such as water mass subduction, mixing, advection and ventilation are 
important conduits for propagating long-term trend signals from 
the surface down to the subsurface ocean31. In addition, concurrent 
changes in temperature and salinity can increase oxygen consumption 
and weaken the ventilation and subduction of oxygen from the surface 
to the thermocline35,41. The combination of these two factors suggests 
a composite relationship to the observed subsurface deoxygenation.

The observed long-term emergence of compound CIDs over the 
past 64 years also reveals different regional spatial patterns (Fig. 2). 
Large-scale significant compound emergence is observed in the sub-
tropical North Atlantic, the subtropical Pacific, the tropical Atlantic, 
the Mediterranean Sea and the northern Indian Ocean. Some of these 
emerged before the 2000s, others after. Among these regions, in 
the epipelagic zone (Fig. 2b), the Mediterranean Sea shows the high-
est percentage of significant double and triple emergence, reach-
ing up to ~96%. This is followed by the subtropical North Atlantic 
(~93% within ~20° N–40° N) and the tropical Atlantic (~71% within 
~20° S–20° N). In these regions, certain specific dynamical regimes 
dominate, such as coastal upwelling zones42, tropical oxygen minimum 
zones (OMZs)37,43, basin-scale to global-scale circulation systems (for 
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example, the meridional overturning circulation44,45) and regions of 
transport convergence46.

For example, North Atlantic warming27, deoxygenation35,41 and 
‘salinity pile-up’47 are driven by enhanced air–sea exchange of heat, 
water and oxygen along with changing oceanic processes, stratification 
and inter-basin transport of water properties. These changes are known 
to be also influenced by climate modes, such as the North Atlantic Oscil-
lation or the Atlantic Multidecadal Oscillation27. In addition, changes 
in the warming-induced circulation variability and the thermohaline 
structure of water masses, superimposed by changes in the rate of nutri-
ent supply, contribute to the deoxygenation in the eastern boundary 
upwelling zone and tropical Atlantic OMZs6, suggesting a composite 
relationship to the triple emergence of compound CIDs (see the termi-
nology in Fig. 4). Double and triple emergences in the mesopelagic zone 
are observed in similar regions detected in the overlying layer, such as 
in the Pacific and North Atlantic subtropical gyres (Fig. 2c), which are 
characterized by deep-reaching (about 800 m) dynamical patterns48.

A large fraction of the North Indian Ocean (~58% within ~0–30° N) 
and the North Pacific Subtropical Gyre (~42% within ~23–40° N) in the 
mesopelagic zone are subject to significant compound emergence 
(Fig. 2c). In the Arabian Sea, triple emergence occurs in an enhanced 

evaporative region characterized by the changes of air–sea interac-
tions, the overflow of warmer, high-salinity, oxygen-saturated water 
from the Red Sea and the Persian Gulf, monsoon-induced circulation 
changes, and the expansion and deepening of the OMZ of the Ara-
bian Sea49–53. In addition, one of the possible factors influencing the 
observed double and triple emergences in the mesopelagic zone in 
the Bay of Bengal is the eastward inflow of high-salinity water from the 
Arabian Sea via the Summer Monsoon Current54,55.

Ocean exposure to the emergence of compound 
CIDs
To further explore how long, how strong and how fast compound 
CIDs emerge in the preceding five regions, three metrics (duration 
of emergence, intensity of emergence and magnitude of emergence) 
are defined on the basis of their probability density (see panel b of the 
figure in Box 1 and Supplementary Table 2). The spatial maps of the 
three emergence metrics are presented in the Supplementary Fig. 4 
(see section D of Supplementary Information). High, medium and low 
exposure are then defined on the basis of the extent of the preceding 
three metrics (see panel c of the figure in Box 1 and Methods). In the 
subtropical central North Atlantic, there is a notable medium (high) 
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exposure of double emergence to compound CIDs in the surface (epipe-
lagic zone) related primarily to warming and salinization (Fig. 3a,b). 
In addition, the epipelagic zone and mesopelagic zone of most of the 
Mediterranean Sea, the North Atlantic subtropical gyre and its western 
boundary current (for example, the Gulf Stream) show high exposure 
to the triple emergence (Fig. 3b,c). Similar characteristics are observed 
in the mesopelagic zone for the tropical Atlantic OMZ, the Arabian Sea 
and most of the North Atlantic subtropical gyre, represented mainly 
by long duration, high intensity and high magnitude of emergence 
(Fig. 3c). Our results show that a substantial fraction of the subsurface 
ocean (about 25% of the global ocean) is already significantly exposed 
(with medium to high exposure) to the emergence of more than two 
CIDs and is expected to continue to emerge in more regions according 
to projections3,56.

This physical understanding of the ocean’s exposure to the double 
and triple emergence provides a global view of concurrent changes in 
compound CIDs and their multivariate relationships. Compound CIDs 
potentially involve nonlinear interactions that include joint, causal and 
composite relationships (Fig. 4 and Box 1). For example, the ocean’s 
exposure from the double emergence of warming coupled with salinity 
changes may jointly cause changes in ocean stratification40, density57 
and circulation47 ( joint relationship). At the same time, coupling with 
ocean deoxygenation (that is, the double emergence of warming and 
deoxygenation) could cause an expanding area of ‘dead zone’58 (causal 
relationship; Fig. 4). The combined interaction of double or triple emer-
gence (that is, composite relationship) may indicate multiple nonlinear 
interaction pathways in the energy cycle27, hydrological cycle30 and 
biogeochemical cycle (for example, carbon cycle and oxygen cycle)15. 
Therefore, further research is needed to improve the understanding of 
the physical and biological processes in the regions highly exposed to 
compound CIDs, especially multivariate relationships (or multi-system 
interactions) in a complex climate system (for example, changes in 
ventilation, stratification, density and circulation).

Future perspectives
Our results indicate that a substantial portion of the global ocean, 
ranging from surface waters to the epipelagic and mesopelagic zones, 
has experienced moderate to substantial exposure to the emergence 
of long-term compound CIDs over the past six decades. This indicates 
a transition to a different ocean state in a warming climate. Therefore, 
it is important to quantify the level of the impact from climate change 
on observed compound effects. Here we provide some first indica-
tions by analysing the spatial distribution of long-term compound 
CIDs emergence coinciding with regions critical for natural carbon 
sequestration (Fig. 5a), global fishing activities (Fig. 5b) and recent 
international policy negotiations (Fig. 5c).

The ocean’s biological carbon pump plays a critical role in regu-
lating atmospheric CO2 levels through processes such as primary 
production, particle aggregation and sinking, remineralization, and 
sequestration59. Our data show that approximately 48.28%, 13.17% 
and 2.83% of the current global organic carbon export at 100 m depth 
originates from regions characterized by medium to high exposure 
to significant single, double and triple CID emergences, respectively 
(Fig. 5a). With respect to global fisheries, we show that approximately 
51.47%, 14.33% and 3.01% of regions characterized by high fishing inten-
sity (greater than 0.01 h km−2) are exposed to significant single, double 
and triple CID emergences, respectively. Notable affected regions 
include the eastern North Atlantic, Gulf Stream, Mediterranean Sea, 
Tropical Atlantic, Kuroshio, seas around small island countries in the 
South Pacific, and Atlantic Subtropical Gyre (Fig. 5b). While histori-
cal narratives have traditionally emphasized cultural and political 
factors in shaping fishing activities60, our results suggest a potential 
influence of compound climate change on the blue economy and on 
climate risk assessment within the fisheries or mariculture sectors61. 
We therefore advocate incorporating the aforementioned compound 
CIDs as multiparameter into biogeochemical or bioclimatic models 
(for example, species distribution model; climate envelope model).  
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Fig. 5 | Interplay of exposure from the emergence of compound CIDs with 
the biological carbon pump, global fishing activities and their emergence 
in the high seas (Biodiversity Beyond National Jurisdiction). a, Mean total 
organic carbon export (mgC m−2 d−1) from ref. 59. b, Mean 2013–2020 total fishing 
effort (fishing hours per square kilometre) from ref. 60. c, Median fraction (%) 

of the high seas64 with the individual and compound CID emergences before 
2023 across different layers. Error bars represent 95% data uncertainty range 
(definitions in Methods). The slashes, black dots and purple dots represent the 
areas of exposure (medium and high) to single, double and triple emergences in 
the epipelagic zone (0–200 m, corresponding to Fig. 3b), respectively.
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By accurately understanding the relationships among these parameters 
(Fig. 4) in the model, this approach can improve understanding of the 
biological carbon pump62 and ocean fisheries conditions63 for the past 
and future ocean changes, finally contributing to formulating reliable 
ocean adaptation strategies.

In addition, a substantial portion of the high seas, particularly 
the Biodiversity Beyond National Jurisdiction areas64, is already expe-
riencing a double or triple emergence of compound CIDs, with the 
incidence increasing from the surface (~6%) to the mesopelagic zone 
(~38%; Fig. 5c). These findings support the establishment of large-scale 
marine protected areas within these ‘compound climate change hot-
spots’ and for guiding the implementation of environmental impact 
assessments in accordance with the adopted treaty64. The emergence of 
compound CIDs thus serves as an analysis framework, a science-policy 
interface tool and data/indicators to facilitate the integration of oce-
anic environmental change understanding with broader knowledge of 
the compound impacts on the ocean and human societies.

Due to the limited availability of observation-based products, only 
a finite number of CIDs at the global scale can currently be comprehen-
sively assessed65. Facilitating data processing techniques and ensuring 
open access to data through the expansion of initiatives such as the 
Global Climate Observing System66 and the Global Ocean Observing 
System67 will enable the study of a broader range of long-term changes 
in CIDs across different components of the Earth system and in broader 
regions. This could include biogeochemical variables such as subsur-
face pH, dissolved inorganic carbon, [H+], pCO2(partial pressure of CO2), 
chlorophyll-a concentrations, primary production rates and nutrient 
concentrations in the ocean (for example, ref. 68). Furthermore, an 
analysis of Coupled Model Intercomparison Project Phase 6 (CMIP6) 
models indicates substantial uncertainty in representing the com-
pound ToE patterns because of large spreads in model simulations of 
subsurface salinity and dissolved oxygen changes (Supplementary  
Figs. 5−7 versus Extended Data Figs. 2–4). Although we note that some 
models may reproduce similar ToE results compared with observations 
(for example, GFDL-CM4, BCC-CSM2-MR, FIO-ESM-2-0 and CMCC- 
ESM2), using model ensemble mean may not be the most effective tool 
for studying compound CIDs. Thus, caution is needed when relying 
solely on the model ensemble mean to project future risks. Consoli-
dated efforts are essential to understand model biases and constrain 
future projections.

As the prevalence of long-term concurrent changes in compound 
CIDs has escalated in a warming climate, it is imperative to recognize 
the potential biological effects of exposure to these. Such effects 
could be synergistic, where the combined effect of multiple factors 
is greater than the sum of their individual effects6,69. Conversely, 
they may also exhibit antagonistic interactions, where the combined 
effect is less than the sum of the individual effects, or simply addi-
tive, where the combined effect is equal to the sum of the individual 
effects6,69. These dynamics have implications for the dynamics of 
deep-sea coral ecosystems70,71, phytoplankton72, zooplankton73, 
fishery catches74, aquatic woody plants75, invertebrates76, mammals77, 
marine biodiversity78 and so on (Fig. 4). These efforts are paramount 
to supporting initiatives such as ecosystem-based fisheries man-
agement79 and the blue economy80 for the ocean and improving 
frameworks for assessing ocean risk, especially in the context of 
compound risks, in various ocean sectors81 for policymakers and 
ocean management.

While we do not formally attribute these compound ocean state 
changes to specific anthropogenic forcing, feedbacks or internal 
variability, the additional CMIP6 experiments included here show 
that the significant emergences of compound CIDs are due largely to 
anthropogenic climate change (Supplementary Information section 
E). Furthermore, the current ToE estimation is very likely a conserva-
tive estimation from the global climate change perspective since the 
Industrial Revolution of the 1850s (Supplementary Information section 

F). Our conclusion is also supported by numerous previous studies that 
have discussed or attributed the long-term change in individual CIDs 
in the context of a warming climate (for example, temperature/ocean 
heat content27,29; salinity30,82; dissolved oxygen37,56,83; pH11,68). Further 
formal attribution studies to better isolate the forced response could 
improve the current estimation.

Compound long-term changes of CIDs will probably continue to 
evolve in a warming future as projected by climate model simulations56, 
with the high-exposure areas likely to continue to increase. The evolu-
tion of ocean climate, whether in causal, joint or composite interac-
tions, is rapidly transforming oceanic physical and biogeochemical 
conditions to an interconnected changing ocean climate state. This 
complex transformation is gradually reshaping marine biodiversity78, 
and internal ocean processes, with potential changes in thermoha-
line circulation47, sea-level rise84, compound extremes events13 and 
so on. There are also socioeconomic impacts, with sectors such as 
fisheries and marine aquaculture likely to face increasing challenges  
(for example, Fig. 5b), highlighting the need for compound risk assess-
ment associated with climate-related hazards81,85. For example, any 
change in the marine environment caused by the compound CIDs 
that exceeds an ecological threshold for organism survival may have 
irreversible consequences for the affected species86,87. In fact, it is 
unclear how these compound effects will evolve in the future under 
the background of a changing ocean state. Questions still need to be 
resolved in the next step to understand species-specific impacts of 
compound environmental changes88.
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Methods
Datasets
In this study, we focus on the concurrent long-term changes of the fol-
lowing CIDs: ocean mean temperature (T), salinity (S), dissolved oxygen 
(DO) and surface pH. Extended Data Table 1 lists the observational data 
products used in this study. We selected these four CIDs concerning 
the assessments of the confidence levels, potential impacts on marine 
ecosystems and risk management in the Sixth Assessment Report of 
the IPCC4,6 (Supplementary Information section A), the identifica-
tion and determination of robust CID categories in the open ocean 
associated with essential climate variables102 and the data availability 
(Supplementary Information section B).

For temperature, we use the Institutes of Atmospheric Physics 
(IAP, Chinese Academy of Sciences) monthly temperature global 
ocean gridded products (version 4) at 1° × 1° horizontal resolution 
for the upper 6,000 m with 119 standard depth levels from 1960 to 
2023103. The strength of IAP temperature products has been dis-
cussed in previous publications, including the bias corrections for 
in situ temperature profile data (for example, XBT (expendable 
bathythermograph), MBT (mechanical bathythermograph) and 
Bottle104–106), an updated quality control method that accounts for the 
skewness of local variable distribution, topographic barriers and the 
shift of distribution due to climate change107, an ensemble optimal 
interpolation (EnOI) method to fill the data gaps with dynamical 
covariances that can minimize the sampling errors caused by changes 
in the temporal–spatial distribution of in situ observations108. In 
addition, this product uses the EnOI with a dynamical ensemble 
to generate 30 members to represent the analysis uncertainty, in 
which the instrumental uncertainty and reconstruction (sampling/
mapping) uncertainty are represented by the spread over the 30 
members30,108. As more global and long-term scale observational 
temperature products are available, other independent products, 
such as the Ishii temperature gridded product36 at 1° x 1° for the 
upper 3,000 m from 1960 to 2022 (version 7.3.1), are used to check 
the robustness of the temperature ToE. The technical processing is 
similar to the IAP temperature dataset, with the main differences in 
gapping filling (interpolation to the climatology), XBT bias correc-
tion and data quality control schemes36,103.

For salinity, we also use the latest versions of IAP monthly salinity 
global ocean gridded products with the same temporal–spatial reso-
lution as the temperature dataset30. The strength of the IAP salinity 
product shares similarities with the IAP temperature product, with 
an updated quality control method109, using the most up-to-date 
delayed-mode Argo in situ profiles110, an EnOI method108 and an analy-
sis of uncertainty that accounts for instrumental uncertainty and 
sampling/mapping uncertainty that are represented by the spread over 
the 36 salinity members30,108. Similarly, with temperature products, the 
Ishii salinity gridded product36 at 1° x 1° for the upper 3,000 m from 
1960 to 2022 (version 7.3.1) is also used to check the robustness of the 
result of salinity emergence.

For dissolved oxygen, the IAP monthly oxygen global ocean grid-
ded products at 1° × 1° horizontal resolution for the upper 6,000 m 
with 119 standard vertical levels from 1960 to 2022 are used111,112. This 
dataset also combines three available instruments (CTD, Bottle and 
Argo) with a bias adjustment for delay-mode Argo oxygen profiles to 
ensure the data consistency between different oxygen instruments112, 
a new quality control method to detect the outliers112, and the EnOI 
method to fill the data-gap regions and give objective analyses of 
uncertainty that account for instrumental uncertainty and sampling/
mapping uncertainty that are represented by the spread over the 30 
dissolved oxygen members108. This IAP product is a monthly product 
but combines 3 years of data for its monthly estimate because of the 
data sparseness37. As more global-scale observational products for 
ocean oxygen are available, we also utilized another independent 
monthly observational gridded product to evaluate the robustness 

of the main findings: Global Upper Ocean Dissolved Oxygen Anomaly 
Dataset (version 2; referred to as the ‘Ito’ dataset37).

The pH data (pH on total scale) are from the Global Ocean Surface 
Carbon dataset, at 0.25° × 0.25° horizontal resolution from 1985 to 
2021, managed by the Copernicus Marine Service113. This monthly satel-
lite observational-based product uses a multivariate linear regression 
(Locally Interpolated Alkalinity Regression) and the CO2sys speciation 
software error propagation to estimate the reconstruction uncertainty, 
which is represented as a standard deviation of pH. This product has 
been evaluated by independent data, including surface ocean carbon 
dioxide partial pressure and surface ocean alkalinity114. In addition, the 
OceanSODA-ETHZ satellite pH data product115 at a 1° box from 1985 to 
2021 is utilized to test the robustness of the result of surface pH emer-
gence. Here we investigate only the emergence of surface acidification 
because up-to-date, observational- (reanalysis) based data products 
available now114,116–119 do not have long time series with global coverage 
to perform the subsurface acidification ToE estimates.

The term ‘CID’ is used as an approach to guiding the oceanic physi-
cal change to the impact of climate change (for example, compound 
effects on marine biology; Box 1). Therefore, in this study, based on 
the penetration of sunlight and the distribution of marine life120, we 
consider the ToE at depth in the following three layers: (1) surface (0 m); 
(2) epipelagic zone (euphotic zone; 0–200 m) and (3) mesopelagic zone 
(twilight zone; 200–1,000 m).

ToE and its uncertainty estimation
In this study, the ToE of each CID is estimated following the defini-
tions in ref. 10, which refers to the time when the long-term signal 
emerges from the background noise and never falls back again into 
the noise threshold during the entire analysis period10. A linear regres-
sion from the global change to the local change is used in each 1° box 
at each depth:

L (t) = α × G (t) + β (1)

where L (t) is the local anomaly time series for each CID in each grid cell, 
G (t) is the corresponding smoothed version of global average with 
25-year LOWESS filter smoothing. For salinity, G (t) is the salinity con-
trast time series following the method introduced by Cheng et al.30 for 
the same period. Testing the sensitivity of this choice with CMIP6 model 
data revealed no significant difference between applying a 25-year and 
a 50-year filter (Supplementary Figs. 1–3). The α  is the linear scaling 
factor between L (t) and G (t), and β is the residual term. Here the local 
signal (S) changing with time is α × G (t), representing the local signal 
of long-term climate signal (Supplementary Fig. 8). The local noise (N) 
is defined as the standard deviation of the residuals (L − α × G (t)), which 
is constant with time (Supplementary Fig. 9). Then the SNR is calculated 
(SNR measures how far the climate is being shifted from this past range; 
Supplementary Fig. 10). The ToE is then defined as the first year in which 
|SNR| > 1 (ref. 121; see examples in Supplementary Fig. 11). |SNR| > 1 
denotes the ToE is estimated on the 67% confidence level of the esti-
mated short-term variability defined by noise. But the ToE results using 
|SNR| > 2 (that is, 95% confidence level of the emergence) are also pre-
sented (Figs. 2 and 3; further details in Methods, ‘Sensitivity of SNR 
choice’). Previous studies have performed sensitivity tests on the SNR 
calculation, showing that different choices of SNR threshold do not 
substantially impact the main conclusions or the overall narrative121,122. 
Reference 9 indicates that the local SNR may fall back again into the 
noise level because of the impact from the (multi-)decadal variability. 
Note that this case will not likely occur for temperature and salinity in 
this study within the investigated period because the local emergence 
is defined by the scaled monotonically increased global signals with a 
25-year signal versus noise cut-off. Nevertheless, an additional CMIP6 
sensitivity test by changing the cut-off period of 25 years to 50 years 
demonstrates that the impact of this case is relatively small (we have 
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included this uncertainty as ‘uncertainty due to the quantification of 
signal’ into the total uncertainty; Extended Data Fig. 8 and 
Supplementary Figs. 1–3).

Since most of the data are available for about the past ~60 years, 
we used a 25-year cut-off threshold to separate long-term signal change 
and noise (for example, due to data noise and internal variability), fol-
lowing ref. 22. The chlorophyll-a and net primary production (which are 
also classified as the ocean CIDs because these variables can strongly 
affect ocean ecosystems such as biomass, species habitats and food 
webs74) cannot currently be included in our study due to the length of 
available observational data (available for only about 25 years123; see 
Supplementary Information section C for an assessment). In addition, 
as our research focuses on long-term ocean state changes, CIDs that 
represent short-term timescale variability, such as annual, interan-
nual or decadal variability, or extreme events (for example, marine 
heatwaves) are not addressed here. The polar regions (beyond 70° N 
and 60° S) are not examined due to lack of data.

The uncertainty in estimating the ToE depends primarily on the 
following sources of errors: data sampling and mapping approach, 
instrumental systematic biases108, the existence of (multi-)decadal 
variability that impacts the quantification of the climate change signal 
and reference period (baseline) choice and so on. Four major sources 
of uncertainties are accounted for in the overall ToE uncertainty esti-
mation: instrumental uncertainty, mapping uncertainty, sampling 
uncertainty and uncertainty due to decadal variability in the quan-
tification of the signal and baseline choice (Extended Data Fig. 8), 
described as follows.

For temperature, salinity and dissolved oxygen, the mapping 
uncertainty, sampling uncertainty and instrumental uncertainty are 
estimated using ensemble members provided by IAP products108 (30 
members for temperature, 36 members for salinity and 30 members 
for dissolved oxygen). The warming/cooling (or salinization/freshen-
ing; or deoxygenation/oxygenation) emergence at the 95% uncertainty 
range, represented by the ensemble members of the data products, is 
calculated following the approach of refs. 9,122. Taking temperature 
as an example, the ToE is first estimated for each of the 30 members 
following the definition of ref. 10 (equation (1)), which are then divided 
into three groups: (A) warming emergence, (B) cooling emergence and 
(C) no emergence. The final estimate of ToE and its 95% data uncertainty 
range (the 2.5th percentile to the 97.5th percentile) is defined following 
the decision tree provided in Extended Data Fig. 9. A long-term change 
is defined as ‘significant emergence’ only if both the ToE and its 95% 
uncertainty range are earlier than 2023. Otherwise, it is defined as an 
‘insignificant emergence’.

For surface pH, the Copernicus Marine Global Ocean Surface 
Carbon surface pH data (Copernicus Marine Service) provides the 
uncertainty estimate with a standard deviation error estimate, tak-
ing into account the reconstruction error and the errors of various 
predictors113,124. Here we define the 95% uncertainty range due to the 
data product uncertainty as two times the standard deviation interval.

For temperature, salinity and dissolved oxygen, we use the fol-
lowing method to estimate the ToE uncertainty range due to dec-
adal variability in the quantification of the signal and baseline choice 
(because the long-term climatic changes signals are defined as changes 
at timescales longer than 15–20 years and the baseline is defined as 
30 years from 1960 to 1989 in this study). Some climate (multi-)decadal 
variability exhibiting periodicities of up to 50 years can potentially 
impact our ToE calculation (long-term change estimation) through two 
methodology choices: (1) the baseline setting and (2) the 25-year signal 
cut-off period of smoothing for G(t). A sensitivity test is performed by 
using CMIP6 historical and Shared Socioeconomic Pathways (SSP2 4.5) 
simulation data125. We (1) increase the LOWESS smoothing windows 
from 25 to 50 years to quantify the signal and (2) increase the baseline 
choice from 20 years (1960–1979) to 50 years (1935–1984; although 
our main text uses a 30‑year baseline, testing the sensitivity over an 

~20–50 year range here establishes an upper bound on the uncertainty 
estimate; also see Supplementary Fig. 12). We then investigate the ToE 
from 1960 to 2023. The difference between ‘25 years smooth version 
and 20 years baseline’ and ‘50 years smoothing version and 50 years 
baseline’ can be used to assess the impact of decadal variability; this is 
because the 50 years LOWESS smoothing and 50 years baseline could 
effectively smooth most of the natural decadal variability (that is, the 
Pacific Decadal Oscillation has a period of 10–30 years (ref. 126) and 
the Atlantic Multidecadal Oscillation has a period of 50–80 years (ref. 
127)). Here multimodel ensemble strategies are considered because 
different models can simulate different decadal variability56: 23 
models for temperature, 16 for salinity and 10 for dissolved oxygen 
(Supplementary Table 1). The ‘climate drift’ (due to the model errors) 
in each model is subtracted using a ‘quadratic’ polynomial regression 
in each grid box following the suggestions of Cheng et al.30. In both 
cases, the same ToE method was applied, with the only difference 
being the signal definition and baseline choice. Following refs. 9,122, 
the 95% emergence uncertainty range is represented by the spread of 
the model (that is, multimodel ensemble median and 2.5–97.5% range)

The results show that (1) for temperature, regionally, the ToE 
difference in 2022 between Group A and Group B can be up to 2–4 
(±3) years (with a 95% confidence level), with a global percentage 
area difference of 0–4% (Supplementary Fig. 1); (2) for salinity, the 
impact of the decadal variability can be up to 5 (±4) years and ~0–4% 
difference for the global percentage area (Supplementary Fig. 2); (3) 
for dissolved oxygen, the impact can be up to 6 (±4) years and ~0–2% 
(Supplementary Fig. 3). Spatially, the substantial impact is distributed 
mainly around the ‘key regions’ of Atlantic Multidecadal Oscillation 
and Pacific Decadal Oscillation variability (for example, North Atlantic 
Subtropical Gyre, North Central Pacific and the Southern Ocean). For 
the worst cases, the impacts can be up to 6 (±4) years and 4% for the 
global percentage emergence for temperature, salinity and dissolved 
oxygen. We conclude that, although the decadal variability can intro-
duce a small error to the ToE estimates, varying the LOWESS smooth-
ing windows from 25 up to 50 years and changing the baseline from 
20 years to 50 years will not substantially change the estimates of the 
ToE, and 25-year smoothing version and 30 years baseline (1960–1989) 
is a reasonable choice to detect the observed long-term change since 
1960 in this study (given the relatively short observational record). 
Nevertheless, this uncertainty (referred to in this study as ‘uncertainty 
due to decadal variability in the quantification of signal and the baseline 
choice’) is added to the sampling/mapping/instrumental uncertainty 
previously defined to derive the total uncertainty of compound emer-
gence (Extended Data Fig. 8). By simply summing the two errors, we 
do not assume that the two sources are independent, resulting in an 
upper bound on the uncertainty estimate.

Extended Data Figs. 1–4 show the results of individual ToE (for 
temperature, salinity, dissolved oxygen and surface pH, respectively) 
from 1960 to 2023. We observe that a large fraction of the global ocean 
has already shifted to a new climate state compared with 40–60 years 
ago, despite the climate background variability and observational 
errors. Although we are focusing on the entire upper 1,000 m of ocean 
changes, sea surface changes are compared with previous investiga-
tions, showing that the spatial and temporal ToE patterns of surface 
temperature, surface salinity and surface pH are consistent with the 
previous publications10,11,14,30,121,128.

Robustness of the results on the choice of observational data 
products
IAP data products are used as a central estimate of ToE of temperature/
salinity/dissolved oxygen mainly because (1) they provide consistent 
uncertainty estimates for all variables, so the results are consistent for 
all key variables investigated in this study30,103,108; (2) previous independ-
ent evaluations129,130 indicate the IAP products are particularly robust 
for long-term change studies despite the data quality and data sparsity 
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issues. Here it is mandatory to test the robustness of the results for 
independent products. For temperature and salinity, the Ishii tempera-
ture/salinity gridded product36 is used, in which the data-gap filling, 
bias correction and quality control schemes are different from the IAP 
products. For dissolved oxygen, the Ito Dataset37 is used, in which the 
main differences of this product with IAP product is in mapping strate-
gies, data sources, data quality control, bias correction, and small-scale 
and high-frequency variability analysing. For pH, the OceanSODA-ETHZ 
satellite pH data product115 is also used to check the robustness. The 
results of ToE for temperature, salinity, dissolved oxygen and surface 
pH are robust among different observational products used (Extended 
Data Figs. 1 and 5–7). More specifically, the medium- to high-exposure 
regions (that is, the North Atlantic Ocean, the tropical Atlantic Ocean, 
the Mediterranean Sea and the Arabian Sea; Fig. 3) can be generally 
identified by using the Ishii dataset for temperature and salinity, the 
Ito dataset for dissolved oxygen and the OceanSODA-ETHZ dataset 
for surface pH.

The compound CID emergence and its uncertainty estimation
The methods for determining the compound CID emergence (that 
is, double emergence and triple emergence) have briefly been dis-
cussed in the main text (Box 1). The overall ToE uncertainty of com-
pound CIDs is estimated using a Monte Carlo approach131 (shown in 
Extended Data Fig. 8). In detail, in each Monte Carlo simulation, we 
randomly select one member from each individual CID, and then we 
define the double and triple emergence regions for each simulation 
following the approach shown in Box 1. This process is repeated 3,500 
times for double CIDs and 80,000 times for triple CIDs to generate a 
set of realizations with different emergence directions (for example, 
only warming emergence, only salinization emergence, both warm-
ing and salinization emergence, no emergence). These Monte Carlo 
simulations of different variables are combined to provide an ensemble 
for double emergence and triple emergence separately. To determine 
the confidence interval on the basis of these ensembles, we follow the 
approach of ref. 122, as shown in Supplementary Fig. 13, with the Monte 
Carlo realizations. Then the ‘significant double emergence’ and ‘sig-
nificant triple emergence’ regions (for example, significant warming 
and salinization) are represented by the median year with ToE and the 
95% uncertainty range across all realizations.

Definitions and calculations of duration, intensity and 
magnitude of emergence and the resulting exposure
The intensity of emergence for individual CIDs is defined as how 
strongly the signal has been changed since it emerged from the back-
ground noise, quantified by the SNR in 2023 (that is, represented by 
the intercept in panel a of the figure in Box 1). Duration of emergence 
for individual CIDs is defined as how long the signal has been changed 
since it emerged from the noise (that is, the persistence of emergence), 
quantified by the difference between 2023 and its time of emergence 
(that is, 2023–ToE). The unit is the year. The magnitude of emergence 
for individual CIDs is defined as how fast the signal has been changed 
since it emerged from the noise, quantified by its linear trend (linear 
regression; represented by the slope in panel a of the figure in Box 1). 
The units are °C decade−1 for temperature, PSU decade−1 for salinity, 
μmol kg−1 decade−1 for dissolved oxygen and pH units decade−1 for 
surface pH. Here the magnitude refers to the rate of signal change and 
can be jointly determined by the duration and intensity of emergence. 
Therefore, magnitude is a function of duration and intensity (see panel 
a of the figure in Box 1; these three terms correspond to the three sides 
of the triangle, which can be explained by the Pythagorean Theorem).

These three metrics are quantified in each 1° box at each standard 
depth level on the basis of a data distribution approach (see panel b of 
the figure in Box 1). In detail, following previous studies of individual 
CIDs132,133, we first normalized all these metrics to values between 0 and 
1. Second, the values of each metric are divided into three groups—high 

(long), medium and low (short)—based on its probability density distri-
bution. The threshold between high and medium is set to the median 
plus one median absolute deviation. The threshold between medium 
and low (short) is set to zero (equal to zero denotes ‘no emergence’), 
indicating the regions of no emergence. Specifically, for surface pH, 
the threshold between high and medium is set as the fifth percentile. 
For the definitions of duration, intensity and magnitude of compound 
CID emergence, the high (long), medium and low (short) categories are 
defined on the basis of the individual CIDs (Supplementary Table 2). 
The results are shown in Supplementary Fig. 4 and discussed in sec-
tion D of the Supplementary Information. Finally, ocean exposure 
(three categories: high, medium, low) to the long-term compound 
CIDs is then defined on the basis of the three metrics: duration of 
emergence, intensity of emergence and magnitude of emergence. 
Here ‘high exposure’ refers to a situation where at least two of the above 
three metrics are ‘high’, and ‘low exposure’ refers to a situation where 
at least two of the three metrics are ‘low’, while the ‘medium exposure’ 
refers to the remaining situations (see panel c of figure in Box 1 and 
Supplementary Table 2). It is important to note that our focus is not on 
exposure attribution, exposure for risk assessment, studies of exposed 
specific marine species or populations, or studies of marine ecosystem 
impacts from the emergence of compound CIDs (that is, compound 
effects). Instead, we use a general approach to investigate and under-
stand how the global ocean is exposed to long-term compound CIDs, 
establishing a connection between the oceanic physical science basis 
and their climate change impacts.

Sensitivity of SNR choice
In this study, two types of uncertainties/confidences are presented: (1) 
the uncertainty range arising from ensemble members of the data prod-
ucts (Extended Data Fig. 9 and Supplementary Fig. 13) and (2) the con-
fidence level associated with the SNR threshold in the ToE definition. 
The robustness of the confidence level due to varying SNR thresholds 
corresponds to the confidence level of the estimated short-term vari-
ability (|SNR| > 1 ≈ 67% confidence, |SNR| > 2 ≈ 95% confidence122). Here 
we examined how varying the SNR threshold affects the identification 
of emergence. Increasing the |SNR| threshold to 2 reduces the area of 
emergence before 2023 (red dots in Fig. 2). However, this change does 
not alter the spatial patterns or the identification of key compound 
climate change hotspots (that is, high exposure regions; Fig. 3). There-
fore, adjusting the SNR threshold does not impact the overall narrative 
as the higher threshold is simply more conservative122. Both |SNR| > 1 
and |SNR| > 2 thresholds are used in the literature9,10,121,122,134, each with 
its own caveats: |SNR| > 1 corresponds to a 67% confidence level of the 
estimated short-term variability defined by noise, which may include 
some regions affected by short-term variability; |SNR| > 2 corresponds 
to a 95% confidence level of that emergence but may be too conserva-
tive, potentially missing early changes given the limited observational 
record (starting ~1960). Presenting both levels of confidence ensures 
transparency and allows us to capture a wider distribution of pos-
sible emergences (Figs. 2 and 3). In addition, we note that most of the 
‘high-exposure’ regions identified in this study (dark brown, green 
and purple in Fig. 3) have |SNR| > 2, indicating that this more-stringent 
threshold is already incorporated into our exposure definitions. Spe-
cifically, high exposure is determined by the intensity, duration and 
magnitude of emergence (see panel c of the figure in Box 1), where high 
intensity typically corresponds to |SNR| values greater than 2.

Data availability
The data used to capture and monitor compound ocean state 
changes using ToE and exposure metrics (Figs. 2 and 3; we named it 
the “IAP compound CIDs dataset”) in this study is available at http://
www.ocean.iap.ac.cn/ftp/cheng/Compound_CIDs/ (with providing 
some visualizing codes for policymakers or climate services). The 
IAP (Institute of Atmospheric Physics) temperature gridded product 
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(version 4) is available at https://doi.org/10.12157/IOCAS.20240117.002 
and http://www.ocean.iap.ac.cn/ftp/cheng/IAPv4.2_IAP_Tempera-
ture_gridded_1month_netcdf/. The IAP salinity gridded product is 
available at http://www.ocean.iap.ac.cn/ftp/cheng/CZ16_v0_IAP_
Salinity_gridded_1month_netcdf/. The IAP dissolved oxygen grid-
ded product is available at http://www.ocean.iap.ac.cn/ftp/cheng/
IAP_v0_Ocean_Oxygen_gridded_1deg_0_6000m_dataset/ and http://
www.ocean.iap.ac.cn/ftp/cheng/IAP_oxygen_profile_dataset/. The 
Global Upper Ocean Dissolved Oxygen Anomaly Dataset (version 2) is 
available at https://www.bco-dmo.org/dataset/816978. The Copernicus 
Marine Service—Global Ocean Surface Carbon product is available at 
https://doi.org/10.48670/moi-00047. The OceanSODA-ETHZ product 
is available at https://doi.org/10.25921/m5wx-ja34. The Ishii tempera-
ture and salinity products are available at https://climate.mri-jma.
go.jp/pub/ocean/ts/v7.3.1.

Code availability
The codes to reproduce the main text figures can be accessed via the 
Code Ocean135: https://doi.org/10.24433/CO.6650239.v1 or http://www.
ocean.iap.ac.cn/ftp/cheng/Compound_CIDs/.
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Extended Data Table 1 | A list of the observational datasets used in our study for temperature, salinity, dissolved oxygen, and 
surface pH

CIDs Dataset Data type Time coverage Spatial coverage Resolution

Temperature
IAP temperature gridded data (version 4)103 in situ 1960-2023 Global, 0-6000m 1-degree; monthly

Ishii temperature gridded data36 in situ 1960-2022 Global, 0-3000m 1-degree; monthly

Salinity
IAP salinity gridded data30 in situ 1960-2023 Global, 0-2000m 1-degree; monthly

Ishii salinity gridded data36 in situ 1960-2022 Global, 0-3000m 1-degree; monthly

Dissolved oxygen
IAP oxygen gridded data111,112 in situ 1960-2022 Global, 0-6000m 1-degree; monthly

Global Upper Ocean Dissolved Oxygen 
Anomaly Dataset (version 2)37

in situ 1965-2015 Global, 0-6000m 1-degree; monthly

pH
(1) OceanSODA-ETHZ115 satellite 1985-2020 Global, surface only 1-degree; monthly

(2) CMEMS: Global Ocean Surface Carbon113 satellite 1985-2021 Global, surface only 0.25-degree; monthly
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Extended Data Fig. 1 | The ToE (unit: year) of surface pH using different 
observational-based products. (a) Copernicus: Global Ocean Surface Carbon113 
and (b) Ocean SODA-ETHZ product115. Only acidification emergence is shown. 
(c) is the same as (a) and (b) but shows the global percentage of emergence 
as a function of the year, with the shading indicating the uncertainty range 

represented by the data uncertainty (see Methods). The reference period 
(baseline) is 1985-1989. The polar regions (beyond 60 N and 60S) are not 
examined due to lack of data. Basemap generated with M_Map (www.eoas.ubc.
ca/~rich/map.html).
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Extended Data Fig. 2 | The temperature ToE (unit: year) in different layers 
using the IAP temperature gridded product103. (a) surface, (b) epipelagic zone 
(0-200 m), and (c) mesopelagic zone (200-1000 m). Two emergence directions 
are indicated (red: warming emergence; blue: cooling emergence). Here, |SNR| > 1 
threshold is used to calculate the ToE. The white color indicates no emergence 
before 2023. Areas with insignificant emergence before 2023 (definitions see the 

Extended Data Fig. 9) are marked as black dots. (d) is the same as (a-c) but shows 
the global percentage area of emergence as a function of the year with the shaded 
areas representing the data uncertainty arising from ensemble members of the 
data products (see Methods). Here, the reference period (baseline) is 1960-1979. 
The polar regions (beyond 70 N and 70S) are not examined due to lack of data.
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Extended Data Fig. 3 | The same as Extended Data Fig. 2, but for the salinity ToE (unit: year) in different layers by using the IAP salinity gridded product30.  
(a) surface, (b) epipelagic zone (0-200 m), and (c) mesopelagic zone (200-1000 m).
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Extended Data Fig. 4 | The same as Extended Data Fig. 2, but for the dissolved oxygen ToE (unit: year) in different layers by using the IAP dissolved oxygen gridded 
product111,112. (a) epipelagic zone (0-200 m) and (b) mesopelagic zone (200-1000 m).
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Extended Data Fig. 5 | The temperature ToE (unit: year) in different layers 
using the Ishii temperature gridded product36 (version 7.3.1). (a) surface, 
(b) epipelagic zone (0-200 m), and (c) mesopelagic zone (200-1000 m). Two 
emergence directions are indicated (red: warming emergence; blue: cooling 
emergence). The white color indicates no emergence before 2022. (d) is the 

same as (a-c) but shows the global percentage area of emergence as a function 
of the year, with overlapping the IAP temperature grid product for comparisons 
(transparent areas, same as Extended Data Fig. 2d). Here, the reference period 
(baseline) is 1960-1979. The polar regions (beyond 70 N and 70S) are not 
examined due to lack of data.
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Extended Data Fig. 6 | The same as Extended Data Fig. 5, but using the Ishii salinity product36 (version 7.3.1). Here, two emergence directions are indicated  
(red: salinization emergence; blue: freshening emergence).
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Extended Data Fig. 7 | The ToE (unit: year) of dissolved oxygen in different 
layers using the Ito dataset37 compared with the IAP dissolved oxygen 
product111,112. (a) and (c) is for the epipelagic zone (0-200 m) and mesopelagic 
zone (200-1000 m) in the Ito dataset. (b) and (d) are the same as in (a) and (c) but 
using the IAP dataset. Two emergence directions are indicated (red: oxygenation 
emergence; blue: deoxygenation emergence). White indicates no emergence 

before 2015. (e-f) is the global percentage of emergence as a function of year 
and depth. Here, the error bars in (e-f) denote the 95% confidence interval. The 
investigated period is 1965-2015, and the reference period (baseline) is 1965-1979 
(Ito data) and 1960-1979 (IAP data). The polar regions (beyond 70 N and 70S) are 
not examined due to the lack of data. More discussions of this figure are shown in 
the Supplementary Information.
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Extended Data Fig. 8 | A schematic showing the generation of total ToE uncertainty (overall uncertainty) by combining different sources of error.
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Extended Data Fig. 9 | Schematic illustrating the method used to estimate the uncertainty of a single emergence (individual CID), shown here with temperature 
as an example. The same approach is applied to salinity and dissolved oxygen for estimating ToE and its uncertainty.
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