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Multiple climate-related stressors affect the ocean, including warming,
acidification, deoxygenation and variations in salinity, with profound

effects on Earth system cycles, marine ecosystems and human well-being.
Nevertheless, a global perspective on the combined impacts of these
changes onboth surface and subsurface ocean conditions remains unclear.
Here, applying a time-of-emergence methodology to observed physical and
biogeochemical variables, collectively referred to as compound climatic
impact-drivers, we show individual and compound ocean state changes
have become increasingly prominent globally over the past 60 years. In
particular, observations show the simultaneous emergence of compound
climaticimpact-driversin regions spanning the subtropical and tropical
Atlantic, the subtropical Pacific, the Arabian Sea and the Mediterranean

Sea. We highlight extensive exposure of different ocean layers to compound
emergence, characterized by significant intensity, duration and magnitude.
These results provide acomprehensive framework and perspective to

illustrate the ocean’s vulnerability to pervasive and interconnected changes

inawarming climate.

Theoceanis vulnerable to awide range of environmental stressorsina
warming climate'?, commonly referred to as ‘climatic impact-drivers’
(CIDs)**, which include phenomena such as surface and subsurface
ocean warming, salinity variations, acidification, deoxygenation and
other changes in relevant biogeochemical variables’. The evolving
impacts of these CIDs on marine species, habitats and ecosystems,
and the resulting biological responses®, pose prominent threats to the
ocean’s overall health and resilience’.

Previous studies have examined the emergence of persistent
shifts in several individual CIDs in the context of increasing anthro-
pogenic greenhouse gas (GHG) emissions® ™. Simultaneous changes
in these CIDs potentially amplify persistent pressures on marine life.

However, previous efforts have been limited to a subset of individual
CIDs*'*"?, focused on compound extreme events™™, limited their
scopeto seasurface conditions or specific ocean layers™ ">, or relied
exclusively on model-derived data™'®. There is thus an urgent need
for a comprehensive global investigation of simultaneous changes
based on direct observations in multiple CIDs, hereafter referred to
as ‘compound CIDs’.

Of particular relevance is which regions have already experienced
substantial impacts from prolonged compound CIDs from the surface
to the deep ocean. The temporal and spatial dynamics (that is, when
and where), as well as the mechanisms underlying such changes (that
is,how), are also poorly understood. Here we focus on the concurrent

'State key Laboratory of Earth System Numerical Modeling and Application, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing,
China. *Laboratoire de Météorologie Dynamique, Institut Pierre Simon Laplace, Ecole Normale Supérieure-Université PSL, CNRS, Ecole Polytechnique,
Sorbonne Université, Paris, France. *Mercator Ocean international, Toulouse, France. “State Key Laboratory of Atmospheric Environment and Extreme
Meteorology, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China. *University of Chinese Academic of Sciences, Beijing,

China. </e-mail: chenglij@mail.iap.ac.cn

Nature Climate Change


http://www.nature.com/natureclimatechange
https://doi.org/10.1038/s41558-025-02484-x
http://orcid.org/0000-0003-4342-3356
http://orcid.org/0000-0002-5452-8287
http://orcid.org/0000-0001-9846-8944
http://orcid.org/0000-0002-9854-0392
http://crossmark.crossref.org/dialog/?doi=10.1038/s41558-025-02484-x&domain=pdf
mailto:chenglij@mail.iap.ac.cn

Article

https://doi.org/10.1038/s41558-025-02484-x

BOX1

Definitions for long-term compound CIDs, their emergence and

resulting exposure

CIDs have been well defined and studied®. They can provide the
climate change information of the physical science basis (IPCC
Working Group I) with its impacts, adaptation and vulnerability
(IPCC Working Group Il), helping assess climate change risk
across various sectors and spheres”. Following the IPCC

Sixth Assessment Report, we define CIDs as “physical climate
system conditions (for example, means, trends, extremes) that
affect an element of society or ecosystems and their changes
can be detrimental, beneficial, neutral or a mixture of each
across interacting system elements and regions”°. However,

a comprehensive definition of compound CIDs with respect

to long-term changes remains elusive. In this assessment
framework, ‘compound CID’ refers to multiple CIDs occurring
simultaneously, which may have complex relationships and
interactions, such as through joint relationship®®®', causal
relationship”°* and composite relationship®. They may
exhibit complex interactions that can potentially affect the
ocean by exacerbating or sometimes reducing the overall

ToE and emergence metrics

ISNR]|
=

effects®, thus posing challenges to the ocean””*** (see Fig. 4

for an example of the composite relationship to the multiple
effects). Although similar terminologies have been used in
previous climate change studies®***°¢, precise definitions are

still lacking. In this framework, the joint relationship refers to

the case where the change of two or more independent CIDs
simultaneously influences the change of a dependent CID

(for example, temperature change together with salinity change
can lead to changes in ocean density and ocean stratification“°).
The causal relationship here refers to a change in one CID that
causes a change in another CID (for example, warming can lead
to deoxygenation due to reduced solubility®). The composite
relationship refers to the combined effect of multiple causal

and joint relationships. That is, changes in multiple CIDs may
collectively affect the ocean and, in turn, induce potential positive
or negative feedback on a CID. For example, the joint relationship
between ocean warming and salinization and the causal
relationship between warming and deoxygenation may indicate
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Box Fig. 1| The definition and assessment of CIDs for long-term change using the ToE since 1960. a, Definitions of single, double and triple
emergence of individual or compound CIDs for temperature (black), salinity (red) and dissolved oxygen (blue). The signal emergence metrics
(magnitude, intensity and duration) are defined (see Methods for detail). b, Normalized probability distribution of the estimated emergence
metrics for compound CIDs. The probability is superimposed on the category (high, medium, low) for magnitude, duration and intensity of
emergence (see Supplementary Table 2 for detail). ¢, The ocean exposure categories for the emergence of compound CIDs are determined on
the basis of the categories for magnitude, duration and intensity of emergence (see Methods for detail).
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changes in the ocean’s energy, water and biogeochemical cycles,
including marine ecosystems (Fig. 4).

Compound CIDs are illustrated by the simultaneous emergence
regions, where the ToE of more than one CID can be detected
(see panel a of the figure in Box 1). These concurrent long-term
changes may accumulate (or cancel out) synergistic, additive
and antagonistic effects®®® from the ocean’s physical level to the
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biogeochemical and biodiversity levels. Considering that the
emergence can be linked to biota hazard, climate change impacts
and vulnerability®, ocean exposure to compound CIDs is defined
on the basis of three emergence metrics: duration, intensity and
magnitude (see the figure in Box 1)'*'%°%%" |ncreased exposure may
reveal some potential climate-driven ocean hotspots associated
with the emergence of compound CIDs.
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Fig. 1| Global percentage of emergence as a function of year for individual or
compound CIDs. a, Surface. b, Epipelagic zone (0-200 m). ¢, Mesopelagic zone
(200-1,000 m).d, The same as abut for the global percentage of emergence
intheyear 2023 as a function of depth from 0 to1,000 m. Here an |SNR| >1
threshold is used to calculate the ToE, corresponding to an ~67% confidence
level. The shaded area represents the data uncertainty (95% confidence interval,
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accounting for instrumental uncertainty, sampling/mapping uncertainty and
uncertainty due to (multi-)decadal variability in the quantification of the ‘signal’
and baseline choice (Methods). The percentage is derived from the ratio of the
emergence area to the global ocean area. The reference period (baseline) is
1960-1989 for temperature, salinity and dissolved oxygen, and 1985-1989 for
surface pH.

emergence of persistent changes (spanning more than 25 years, that
is, long-term change perspective) by developing a methodology and
framework to delineate regions that are profoundly affected by pro-
longed and substantial concomitant shiftsin compound CIDs, identify-
ing the timing and mechanisms underlying these shifts. Specifically, we
address four key aspects: (1) the definition of compound CIDs, which
denote simultaneous changes in multiple CIDs; (2) the determination
of whether compound CIDs have emerged in the surface and subsur-
face oceanicrealms as aconsequence of short-term oceanic variability
over the past six decades; (3) the assessment of the duration, intensity
and magnitude of emergence of long-term compound CIDs; and (4)

the evaluation of where and how severely the ocean environment is
exposed to the emergence of long-term compound CIDs. Our analysis
is based on various observational datasets and includes assessments
ofthe persistent changes inindividual CIDs and their collective emer-
gence throughout the oceanic domain.

The compound CIDs framework

Literature onthe concurrent change in the ocean climate system uses
many terms interchangeably, such as multiple stressors*'*", (multi-)
hazards'" and compound events™*°. The terms ‘multiple stressors’and
‘(multi-)hazards’ refer mainly to adverse effects that deviate from the
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Fig. 2| Spatial distribution of the time of emergence (ToE) (single, double and
triple emergence) of compound CIDs in different depth layers. a, Surface layer
(0 m). b, Epipelagic (0-200 m) zone. ¢, Mesopelagic (200-1,000 m) zone. The
white colour indicates no emergence before 2023. Here an |SNR| > 1 threshold
isused to calculate ToE (-67% confidence level), but regions where |SNR| > 2
(-95% confidence level) are additionally marked with red dots. White indicates
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no emergence or insignificant emergence before 2023, as defined by the 95%
confidence interval of data uncertainty (see Extended Data Figs. 8 and 9 and
Methods). Surface pH emergence (black slashes) is shown separately because
ofadifferent reference period. Polar regions (beyond 70° N and 60° S) are not
included due to data limitations.

norm. The term ‘compound events’ is often associated with extreme
events'*?. To differentiate from these terminologies, we use ‘com-
pound CIDs’ to represent the simultaneous and persistent emergence
of multiple CIDs that may have either positive or negative impacts*®
In this assessment framework, we use the time of emergence
(ToE)™ to detect long-term changes in compound CIDs under warm-
ing. We first identify when and where the signal of an individual CID
has emerged from the noise level before 2023 (see the figure in Box 1
and Methods). The long-term change (that is, signal) is quantified by
applying a 25-year LOWESS filter? to the global mean time series. The
background variability (that is, noise) is quantified as the short-term
(<25 years) variability of the local time series. The ToE is then defined
asthefirst yearinwhichthe absolute value of the signal-to-noise ratio
(SNR) exceeds1and never falls back to the noise level (also testing the
impactwith the |SNR| > 2; see Methods for details). On the basis of the
ToE for individual CIDs, we then define regions where multiple CIDs
emerge simultaneously and refer to them as ‘double emergence’ and
‘triple emergence’, following the approach that the ToE of more than

one CID canbe detectedif the signal of these CIDs has already emerged
(seethefigurein Box1).

The categories of intensity, duration and magnitude of emergence
arethen defined by using a statistical distribution approach to analyse
how strong, how long and how fast the signal has changed since its
emergence (Box 1). Finally, these categories are used to understand
where and how the ocean environment is exposed (different categories:
high, medium, low) to long-term climate state changes in compound
CIDs (see the figurein Box 1). Onthe basis of the proposed framework,
we will analyse the changes from the ocean surface to the bottom of
the mesopelagic zone (0-1,000 m) for four selected CIDs: ocean tem-
perature (7), salinity (S), dissolved oxygen (DO) and surface pHin this
study (Extended Data Table1).

Time of emergence of compound CIDs

The ToE has been widely used to detect long-term changes in CIDs
stressors” and climate hazards®®, and our analysis shows that different
CIDsare associated with different timescales. For example, temperature

23,24
’
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tosurface pH emergence is shown separately from other CIDs because of the
different reference period. Here the emergence results are adopted from Fig. 2
(ISNR| > 1threshold), with regions where [SNR| > 2 marked with red dots.

and dissolved oxygen have a typical shorter emergence time than salin-
ity to achieve the same global area coverage of emergence, while surface
pHis the shortest (Fig. 1a,b), consistent with a previous study™. Fur-
ther, we show thatalarge fraction of the global oceanis exposed to the
emergence of both single and compound CIDs before 2023 (relative to
the1960-1989 baseline). In particular, almost the entire global ocean
surface (-100%) is exposed to a decrease in pH emerging from the noise
since 1995 (relative to the 1985-1989 baseline). Thisis attributed mainly
to the continuous and increasing emission of anthropogenic carbon
dioxide, whichinduces a net positive flux of CO, from the atmosphere
to the ocean®. This result is consistent with previous studies® and is
robust among different products used (Extended Data Fig. 1).
Long-term changes in other individual CIDs considered here (7,
Sand DO) have emerged since the early 1990s in about 20-60% of the
global ocean arearelative tothe 1960-1989 baseline, for both the epipe-
lagic and mesopelagic zones (Fig. 1b,c and Extended Data Figs. 2-4).
Local significant ocean warming emergence (Extended Data Fig. 2) is
driven primarily by the enhanced radiative forcing associated with
the increasing atmospheric concentrations of GHGs*"*®, consistent
with the robust observed acceleration of ocean heating since the
1960s*°. Changes in salinity patterns (for example, salinization in
the Atlantic and Indian oceans and freshening in the Pacific Ocean;
Extended Data Fig. 3 and ref. 30) are driven by the intensification of
the global hydrological cycle, often described as a ‘wet-get-wetter’
and ‘dry-get-drier’ paradigm® -2, While salinity is decreasing in most
ocean basins, increases in salinity in the Atlantic Ocean and the Medi-
terranean Sea are discussed in the context of increasing atmospheric
transport of fresh water from these regions™. In general, local tem-
perature and salinity changes in the ocean can result from perturbed
air-sea heat and freshwater fluxes and from the redistribution of the
temperature and salinity fields due to the transport of ocean prop-
erties and circulation changes®*. In addition, ocean deoxygenation
(Extended Data Fig. 4) could be attributed to ocean warming via the
causal relationship between temperature and oxygen solubility (nega-
tive correlation), superimposed onincreasing warming-induced oxy-
gen consumptionin the upper layer®®, Previous studies onlong-term
trend analysis of individual CIDs (mainly for surface layer) also show
a similar spatial and temporal pattern®**, These single-emergence
patterns are not sensitive to the choices of observational-based data

products and are consistent with previous estimates (see the discus-
sions of ‘Robustness of the results on the choice of observational data
products’in Methods and Extended Data Figs. 5-7).

In the case of double emergence (associated Twith S or T with
DO changes), the percentage is about 7% (-3-10%) from the surface
layer down to about 32% (~13-48%) at the bottom of the mesopelagic
zonesincethe2000s (with 95% data uncertainty range, using |SNR| > 1
threshold; Methods). In addition, the global percentage of triple emer-
gence shows an increase at depth along with a decreasing noise mag-
nitude, from about 8% (~6-11%) in the top of the epipelagic zone and
downto11% (7-16%) at the bottom of the mesopelagic zone (mainly for
warming coupled with salinity change and deoxygenation; Fig. 1b—d).
Here the long-term change of ocean warning in combination with
salinity change, freshening and deoxygenation can be discussedin the
context of different types of multivariate relationships between these
CIDs (Box1andFig.4). Thejointrelationship between near-surface tem-
perature and salinity anomalies caninduce changes in the ocean den-
sity, affect upper-ocean stratification, modify the mixed-layer depth
andin turntrigger changes in ocean circulation*”*°, Ocean processes
such as water mass subduction, mixing, advection and ventilation are
important conduits for propagating long-term trend signals from
the surface down to the subsurface ocean™. In addition, concurrent
changes in temperature and salinity can increase oxygen consumption
and weaken the ventilation and subduction of oxygen from the surface
tothe thermocline®*!, The combination of these two factors suggests
acomposite relationship to the observed subsurface deoxygenation.

The observed long-term emergence of compound CIDs over the
past 64 years also reveals different regional spatial patterns (Fig. 2).
Large-scale significant compound emergence is observed in the sub-
tropical North Atlantic, the subtropical Pacific, the tropical Atlantic,
the Mediterranean Seaand the northernIndian Ocean. Some of these
emerged before the 2000s, others after. Among these regions, in
the epipelagic zone (Fig. 2b), the Mediterranean Sea shows the high-
est percentage of significant double and triple emergence, reach-
ing up to ~96%. This is followed by the subtropical North Atlantic
(~93% within ~20° N-40° N) and the tropical Atlantic (-71% within
~20°S-20°N). In these regions, certain specific dynamical regimes
dominate, such as coastal upwelling zones*, tropical oxygen minimum
zones (OMZs)**, basin-scale to global-scale circulation systems (for
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example, the meridional overturning circulation***’) and regions of
transport convergence*.

For example, North Atlantic warming”, deoxygenation®*' and
‘salinity pile-up™ are driven by enhanced air-sea exchange of heat,
water and oxygen along with changing oceanic processes, stratification
andinter-basintransport of water properties. These changes are known
tobealsoinfluenced by climate modes, such as the North Atlantic Oscil-
lation or the Atlantic Multidecadal Oscillation”. In addition, changes
in the warming-induced circulation variability and the thermohaline
structure of water masses, superimposed by changesinthe rate of nutri-
ent supply, contribute to the deoxygenation in the eastern boundary
upwelling zone and tropical Atlantic OMZs®, suggesting a composite
relationship to the triple emergence of compound CIDs (see the termi-
nologyinFig.4).Double and triple emergencesinthe mesopelagic zone
areobservedinsimilar regions detected in the overlyinglayer, such as
inthe Pacific and North Atlantic subtropical gyres (Fig. 2c), which are
characterized by deep-reaching (about 800 m) dynamical patterns*®.

Alarge fraction of the North Indian Ocean (-58% within ~-0-30° N)
and the North Pacific Subtropical Gyre (-42% within -23-40° N) in the
mesopelagic zone are subject to significant compound emergence
(Fig. 2c). In the Arabian Sea, triple emergence occurs in an enhanced

35,41

evaporative region characterized by the changes of air-sea interac-
tions, the overflow of warmer, high-salinity, oxygen-saturated water
from the Red Sea and the Persian Gulf, monsoon-induced circulation
changes, and the expansion and deepening of the OMZ of the Ara-
bian Sea*>. In addition, one of the possible factors influencing the
observed double and triple emergences in the mesopelagic zone in
the Bay of Bengalis the eastward inflow of high-salinity water fromthe
Arabian Sea via the Summer Monsoon Current**,

Ocean exposure to the emergence of compound
CIDs

To further explore how long, how strong and how fast compound
CIDs emerge in the preceding five regions, three metrics (duration
of emergence, intensity of emergence and magnitude of emergence)
aredefined on the basis of their probability density (see panel b of the
figure in Box 1 and Supplementary Table 2). The spatial maps of the
three emergence metrics are presented in the Supplementary Fig. 4
(seesection D of Supplementary Information). High, medium and low
exposure are then defined on the basis of the extent of the preceding
three metrics (see panel c of the figure in Box 1 and Methods). In the
subtropical central North Atlantic, there is a notable medium (high)
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of the high seas® with the individual and compound CID emergences before
2023 across different layers. Error bars represent 95% data uncertainty range
(definitions in Methods). The slashes, black dots and purple dots represent the
areas of exposure (medium and high) to single, double and triple emergences in
the epipelagic zone (0-200 m, corresponding to Fig. 3b), respectively.

exposure of double emergence to compound CIDs in the surface (epipe-
lagic zone) related primarily to warming and salinization (Fig. 3a,b).
In addition, the epipelagic zone and mesopelagic zone of most of the
Mediterranean Sea, the North Atlantic subtropical gyre and its western
boundary current (for example, the Gulf Stream) show high exposure
tothetriple emergence (Fig.3b,c). Similar characteristics are observed
inthe mesopelagic zone for the tropical Atlantic OMZ, the Arabian Sea
and most of the North Atlantic subtropical gyre, represented mainly
by long duration, high intensity and high magnitude of emergence
(Fig.3c). Ourresults show that asubstantial fraction of the subsurface
ocean (about25% of the global ocean) is already significantly exposed
(with medium to high exposure) to the emergence of more than two
CIDsandis expected to continue to emerge in more regions according
to projections®*,

This physicalunderstanding of the ocean’s exposure to the double
andtripleemergence provides aglobal view of concurrent changesin
compound CIDs and their multivariate relationships. Compound CIDs
potentially involve nonlinear interactions that include joint, causal and
composite relationships (Fig. 4 and Box 1). For example, the ocean’s
exposure fromthe double emergence of warming coupled with salinity
changes may jointly cause changes in ocean stratification*’, density”
and circulation” (joint relationship). At the same time, coupling with
ocean deoxygenation (that is, the double emergence of warming and
deoxygenation) could cause an expanding area of ‘dead zone™® (causal
relationship; Fig.4). The combined interaction of double or triple emer-
gence (thatis, composite relationship) may indicate multiple nonlinear
interaction pathways in the energy cycle”, hydrological cycle®® and
biogeochemical cycle (for example, carbon cycle and oxygen cycle)®.
Therefore, further researchis needed toimprove the understanding of
the physical and biological processesin the regions highly exposed to
compound CIDs, especially multivariate relationships (or multi-system
interactions) in a complex climate system (for example, changes in
ventilation, stratification, density and circulation).

Future perspectives

Our results indicate that a substantial portion of the global ocean,
ranging from surface waters to the epipelagic and mesopelagic zones,
has experienced moderate to substantial exposure to the emergence
oflong-term compound CIDs over the past six decades. This indicates
atransition to a different ocean state ina warming climate. Therefore,
itisimportant to quantify thelevel of theimpact from climate change
on observed compound effects. Here we provide some first indica-
tions by analysing the spatial distribution of long-term compound
CIDs emergence coinciding with regions critical for natural carbon
sequestration (Fig. 5a), global fishing activities (Fig. 5b) and recent
international policy negotiations (Fig. 5¢).

The ocean’s biological carbon pump plays a critical role in regu-
lating atmospheric CO, levels through processes such as primary
production, particle aggregation and sinking, remineralization, and
sequestration®. Our data show that approximately 48.28%, 13.17%
and 2.83% of the current global organic carbon exportat100 m depth
originates from regions characterized by medium to high exposure
to significant single, double and triple CID emergences, respectively
(Fig. 5a). Withrespect to global fisheries, we show that approximately
51.47%,14.33% and 3.01% of regions characterized by high fishing inten-
sity (greater than 0.01 h km™) are exposed to significant single, double
and triple CID emergences, respectively. Notable affected regions
include the eastern North Atlantic, Gulf Stream, Mediterranean Sea,
Tropical Atlantic, Kuroshio, seas around small island countries in the
South Pacific, and Atlantic Subtropical Gyre (Fig. 5b). While histori-
cal narratives have traditionally emphasized cultural and political
factors in shaping fishing activities®, our results suggest a potential
influence of compound climate change on the blue economy and on
climate risk assessment within the fisheries or mariculture sectors®.
Wetherefore advocate incorporating the aforementioned compound
CIDs as multiparameter into biogeochemical or bioclimatic models
(for example, species distribution model; climate envelope model).
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By accurately understanding the relationships among these parameters
(Fig.4) inthe model, thisapproach canimprove understanding of the
biological carbon pump® and ocean fisheries conditions® for the past
and future ocean changes, finally contributing to formulating reliable
ocean adaptation strategies.

In addition, a substantial portion of the high seas, particularly
the Biodiversity Beyond National]Jurisdiction areas®, is already expe-
riencing a double or triple emergence of compound CIDs, with the
incidence increasing from the surface (-6%) to the mesopelagic zone
(-38%; Fig. 5¢c). These findings support the establishment of large-scale
marine protected areas within these ‘compound climate change hot-
spots’ and for guiding the implementation of environmental impact
assessmentsinaccordance with the adopted treaty®. The emergence of
compound CIDs thus serves as an analysis framework, a science-policy
interface tool and data/indicators to facilitate the integration of oce-
anicenvironmental change understanding with broader knowledge of
the compound impacts on the ocean and human societies.

Duetothe limited availability of observation-based products, only
afinite number of CIDs at the global scale can currently be comprehen-
sively assessed®. Facilitating data processing techniques and ensuring
open access to data through the expansion of initiatives such as the
Global Climate Observing System®® and the Global Ocean Observing
System® will enable the study of abroader range of long-term changes
in CIDs across different components of the Earth system and inbroader
regions. This could include biogeochemical variables such as subsur-
face pH, dissolvedinorganic carbon, [H'], pco,(partial pressure of CO,),
chlorophyll-a concentrations, primary production rates and nutrient
concentrations in the ocean (for example, ref. 68). Furthermore, an
analysis of Coupled Model Intercomparison Project Phase 6 (CMIP6)
models indicates substantial uncertainty in representing the com-
pound ToE patterns because of large spreads in model simulations of
subsurface salinity and dissolved oxygen changes (Supplementary
Figs.5-7 versus Extended DataFigs. 2-4). Although we note that some
models may reproduce similar ToE results compared with observations
(for example, GFDL-CM4, BCC-CSM2-MR, FIO-ESM-2-0 and CMCC-
ESM2), using model ensemble mean may not be the most effective tool
for studying compound CIDs. Thus, caution is needed when relying
solely on the model ensemble mean to project future risks. Consoli-
dated efforts are essential to understand model biases and constrain
future projections.

Asthe prevalence of long-term concurrent changes incompound
CIDs has escalated inawarming climate, itisimperative to recognize
the potential biological effects of exposure to these. Such effects
could be synergistic, where the combined effect of multiple factors
is greater than the sum of their individual effects®*’. Conversely,
they may also exhibit antagonistic interactions, where the combined
effect is less than the sum of the individual effects, or simply addi-
tive, where the combined effect is equal to the sum of the individual
effects®®’. These dynamics have implications for the dynamics of
deep-sea coral ecosystems’®”!, phytoplankton’?, zooplankton’?,
fishery catches™, aquatic woody plants”, invertebrates™, mammals”’,
marinebiodiversity’ and so on (Fig. 4). These efforts are paramount
to supporting initiatives such as ecosystem-based fisheries man-
agement’® and the blue economy®’ for the ocean and improving
frameworks for assessing ocean risk, especially in the context of
compound risks, in various ocean sectors® for policymakers and
ocean management.

While we do not formally attribute these compound ocean state
changes to specific anthropogenic forcing, feedbacks or internal
variability, the additional CMIP6 experiments included here show
that the significant emergences of compound CIDs are due largely to
anthropogenic climate change (Supplementary Information section
E). Furthermore, the current ToE estimation is very likely a conserva-
tive estimation from the global climate change perspective since the
Industrial Revolution of the 1850s (Supplementary Information section

F). Our conclusionis also supported by numerous previous studies that
have discussed or attributed the long-term change in individual CIDs
inthe context of awarming climate (for example, temperature/ocean
heat content??; salinity®>**; dissolved oxygen®%%3; pH'"*%), Further
formal attribution studies to better isolate the forced response could
improve the current estimation.

Compound long-term changes of CIDs will probably continue to
evolveinawarming future as projected by climate model simulations®,
with the high-exposure areaslikely to continue toincrease. The evolu-
tion of ocean climate, whether in causal, joint or composite interac-
tions, is rapidly transforming oceanic physical and biogeochemical
conditions to an interconnected changing ocean climate state. This
complex transformation is gradually reshaping marine biodiversity’®,
and internal ocean processes, with potential changes in thermoha-
line circulation, sea-level rise®*, compound extremes events" and
so on. There are also socioeconomic impacts, with sectors such as
fisheries and marine aquaculture likely to face increasing challenges
(forexample, Fig. 5b), highlighting the need for compound risk assess-
ment associated with climate-related hazards®"*. For example, any
change in the marine environment caused by the compound CIDs
that exceeds an ecological threshold for organism survival may have
irreversible consequences for the affected species®*®. In fact, it is
unclear how these compound effects will evolve in the future under
the background of a changing ocean state. Questions still need to be
resolved in the next step to understand species-specific impacts of
compound environmental changes®.
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Methods

Datasets

Inthis study, we focus on the concurrent long-term changes of the fol-
lowing CIDs: ocean mean temperature (7), salinity (S), dissolved oxygen
(DO) and surface pH. Extended Data Table1lists the observational data
products used in this study. We selected these four CIDs concerning
the assessments of the confidence levels, potentialimpacts on marine
ecosystems and risk management in the Sixth Assessment Report of
the IPCC*® (Supplementary Information section A), the identifica-
tion and determination of robust CID categories in the open ocean
associated with essential climate variables'®* and the data availability
(Supplementary Information section B).

For temperature, we use the Institutes of Atmospheric Physics
(IAP, Chinese Academy of Sciences) monthly temperature global
ocean gridded products (version 4) at 1° x 1° horizontal resolution
for the upper 6,000 m with 119 standard depth levels from 1960 to
2023', The strength of IAP temperature products has been dis-
cussed in previous publications, including the bias corrections for
in situ temperature profile data (for example, XBT (expendable
bathythermograph), MBT (mechanical bathythermograph) and
Bottle'**'%), an updated quality control method that accounts for the
skewness of local variable distribution, topographic barriers and the
shift of distribution due to climate change'”’, an ensemble optimal
interpolation (EnOI) method to fill the data gaps with dynamical
covariances that can minimize the sampling errors caused by changes
in the temporal-spatial distribution of in situ observations'®. In
addition, this product uses the EnOl with a dynamical ensemble
to generate 30 members to represent the analysis uncertainty, in
which theinstrumental uncertainty and reconstruction (sampling/
mapping) uncertainty are represented by the spread over the 30
members®®'%, As more global and long-term scale observational
temperature products are available, other independent products,
such as the Ishii temperature gridded product®® at 1° x 1° for the
upper 3,000 m from 1960 to 2022 (version 7.3.1), are used to check
the robustness of the temperature ToE. The technical processing is
similar to the IAP temperature dataset, with the main differencesin
gapping filling (interpolation to the climatology), XBT bias correc-
tion and data quality control schemes®*'®®,

For salinity, we also use the latest versions of IAP monthly salinity
global ocean gridded products with the same temporal-spatial reso-
lution as the temperature dataset®’. The strength of the IAP salinity
product shares similarities with the IAP temperature product, with
an updated quality control method'*’, using the most up-to-date
delayed-mode Argo insitu profiles™®, an EnOl method'*® and an analy-
sis of uncertainty that accounts for instrumental uncertainty and
sampling/mapping uncertainty that are represented by the spread over
the 36salinity members®*'°%, Similarly, with temperature products, the
Ishii salinity gridded product® at 1° x 1° for the upper 3,000 m from
1960102022 (version 7.3.1) is also used to check the robustness of the
result of salinity emergence.

For dissolved oxygen, the IAP monthly oxygen global ocean grid-
ded products at 1° x 1° horizontal resolution for the upper 6,000 m
with 119 standard vertical levels from 1960 to 2022 are used™"2, This
dataset also combines three available instruments (CTD, Bottle and
Argo) with a bias adjustment for delay-mode Argo oxygen profiles to
ensure the data consistency between different oxygen instruments'?,
anew quality control method to detect the outliers'?, and the EnOl
method to fill the data-gap regions and give objective analyses of
uncertainty that account for instrumental uncertainty and sampling/
mapping uncertainty that are represented by the spread over the 30
dissolved oxygen members'*®. This IAP product is a monthly product
but combines 3 years of data for its monthly estimate because of the
data sparseness®. As more global-scale observational products for
ocean oxygen are available, we also utilized another independent
monthly observational gridded product to evaluate the robustness

of the main findings: Global Upper Ocean Dissolved Oxygen Anomaly
Dataset (version 2; referred to as the ‘Ito’ dataset™).

The pH data (pH ontotal scale) are fromthe Global Ocean Surface
Carbon dataset, at 0.25° x 0.25° horizontal resolution from 1985 to
2021, managed by the Copernicus Marine Service'. This monthly satel-
lite observational-based product uses amultivariate linear regression
(Locally Interpolated Alkalinity Regression) and the CO2sys speciation
software error propagation to estimate the reconstruction uncertainty,
which is represented as a standard deviation of pH. This product has
beenevaluated by independent data, including surface ocean carbon
dioxide partial pressure and surface ocean alkalinity"*. In addition, the
OceanSODA-ETHZ satellite pH data product™ at a1° box from 1985 to
2021is utilized to test the robustness of the result of surface pH emer-
gence. Here we investigate only the emergence of surface acidification
because up-to-date, observational- (reanalysis) based data products
available now"*"*" do not have long time series with global coverage
to performthe subsurface acidification ToE estimates.

Theterm ‘CID’isused as an approachto guiding the oceanic physi-
cal change to the impact of climate change (for example, compound
effects on marine biology; Box 1). Therefore, in this study, based on
the penetration of sunlight and the distribution of marine life'°, we
considerthe ToE at depthinthe following threelayers: (1) surface (0 m);
(2) epipelagiczone (euphotic zone; 0-200 m) and (3) mesopelagic zone
(twilight zone; 200-1,000 m).

ToE and its uncertainty estimation

In this study, the ToE of each CID is estimated following the defini-
tions in ref. 10, which refers to the time when the long-term signal
emerges from the background noise and never falls back again into
the noise threshold during the entire analysis period™. Alinear regres-
sion from the global change to the local change is used in each 1° box
ateachdepth:

LO=axG@®)+8 )

where L (¢)isthelocalanomaly time series for each CIDin each grid cell,
G(¢t) is the corresponding smoothed version of global average with
25-year LOWESS filter smoothing. For salinity, G (¢) is the salinity con-
trast time series following the method introduced by Cheng et al.* for
the same period. Testing the sensitivity of this choice with CMIP6 model
datarevealed nosignificant difference between applying a25-year and
a 50-year filter (Supplementary Figs. 1-3). The « is the linear scaling
factor between L (t)and G (¢), and Bis the residual term. Here the local
signal (S) changing with time is a x G (¢), representing the local signal
oflong-term climate signal (Supplementary Fig. 8). Thelocal noise (N)
is defined asthe standard deviation of theresiduals (L — a x G (¢)), which
is constant with time (Supplementary Fig. 9). Then the SNRis calculated
(SNRmeasures how far the climate is being shifted from this past range;
Supplementary Fig.10). The ToE is then defined as the first year in which
ISNR| > 1 (ref. 121; see examples in Supplementary Fig. 11). |SNR| > 1
denotes the ToE is estimated on the 67% confidence level of the esti-
mated short-termvariability defined by noise. But the ToE results using
ISNR| > 2 (thatis, 95% confidence level of the emergence) are also pre-
sented (Figs. 2 and 3; further details in Methods, ‘Sensitivity of SNR
choice’). Previous studies have performed sensitivity tests onthe SNR
calculation, showing that different choices of SNR threshold do not
substantially impact the main conclusions or the overall narrative'*"'>,
Reference 9 indicates that the local SNR may fall back again into the
noise level because of the impact from the (multi-)decadal variability.
Note that this case will not likely occur for temperature and salinity in
thisstudy within the investigated period because the local emergence
isdefined by the scaled monotonically increased global signals with a
25-year signal versus noise cut-off. Nevertheless, an additional CMIP6
sensitivity test by changing the cut-off period of 25 years to 50 years
demonstrates that the impact of this case is relatively small (we have
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included this uncertainty as ‘uncertainty due to the quantification of
signal’ into the total uncertainty; Extended Data Fig. 8 and
Supplementary Figs.1-3).

Since most of the data are available for about the past ~60 years,
we used a 25-year cut-offthreshold to separate long-term signal change
and noise (for example, due to data noise and internal variability), fol-
lowingref. 22. The chlorophyll-aand net primary production (which are
also classified as the ocean CIDs because these variables can strongly
affect ocean ecosystems such as biomass, species habitats and food
webs”™) cannot currently be included in our study due to the length of
available observational data (available for only about 25 years'?’; see
Supplementary Information section C for anassessment). In addition,
as our research focuses on long-term ocean state changes, CIDs that
represent short-term timescale variability, such as annual, interan-
nual or decadal variability, or extreme events (for example, marine
heatwaves) are not addressed here. The polar regions (beyond 70° N
and 60° S) are not examined due to lack of data.

The uncertainty in estimating the ToE depends primarily on the
following sources of errors: data sampling and mapping approach,
instrumental systematic biases'’®, the existence of (multi-)decadal
variability thatimpacts the quantification of the climate change signal
and reference period (baseline) choice and so on. Four major sources
of uncertainties are accounted for in the overall ToE uncertainty esti-
mation: instrumental uncertainty, mapping uncertainty, sampling
uncertainty and uncertainty due to decadal variability in the quan-
tification of the signal and baseline choice (Extended Data Fig. 8),
described as follows.

For temperature, salinity and dissolved oxygen, the mapping
uncertainty, sampling uncertainty and instrumental uncertainty are
estimated using ensemble members provided by IAP products'®® (30
members for temperature, 36 members for salinity and 30 members
for dissolved oxygen). The warming/cooling (or salinization/freshen-
ing; or deoxygenation/oxygenation) emergence at the 95% uncertainty
range, represented by the ensemble members of the data products, is
calculated following the approach of refs. 9,122. Taking temperature
as an example, the ToE is first estimated for each of the 30 members
following the definition of ref.10 (equation (1)), which are then divided
intothree groups: (A) warming emergence, (B) cooling emergence and
(C)noemergence. The final estimate of ToE and its 95% datauncertainty
range (the 2.5th percentile to the 97.5th percentile) is defined following
the decisiontree providedin Extended DataFig. 9. Along-term change
is defined as ‘significant emergence’ only if both the ToE and its 95%
uncertainty range are earlier than 2023. Otherwise, it is defined as an
‘insignificant emergence’.

For surface pH, the Copernicus Marine Global Ocean Surface
Carbon surface pH data (Copernicus Marine Service) provides the
uncertainty estimate with a standard deviation error estimate, tak-
ing into account the reconstruction error and the errors of various
predictors™?*, Here we define the 95% uncertainty range due to the
data productuncertainty astwo times the standard deviationinterval.

For temperature, salinity and dissolved oxygen, we use the fol-
lowing method to estimate the ToE uncertainty range due to dec-
adal variability in the quantification of the signal and baseline choice
(because the long-term climatic changes signals are defined as changes
at timescales longer than 15-20 years and the baseline is defined as
30 years from1960t0 1989 in this study). Some climate (multi-)decadal
variability exhibiting periodicities of up to 50 years can potentially
impact our ToE calculation (long-term change estimation) through two
methodology choices: (1) the baseline setting and (2) the 25-year signal
cut-off period of smoothing for G(¢). A sensitivity test is performed by
using CMIP6 historical and Shared Socioeconomic Pathways (SSP24.5)
simulation data'”. We (1) increase the LOWESS smoothing windows
from 25to 50 years to quantify the signal and (2) increase the baseline
choice from 20 years (1960-1979) to 50 years (1935-1984; although
our main text uses a 30-year baseline, testing the sensitivity over an

~20-50 year range here establishes an upper bound on the uncertainty
estimate; also see Supplementary Fig.12). We theninvestigate the ToE
from 1960 to 2023. The difference between ‘25 years smooth version
and 20 years baseline’ and ‘50 years smoothing version and 50 years
baseline’ canbe used to assess the impact of decadal variability; thisis
because the 50 years LOWESS smoothing and 50 years baseline could
effectively smooth most of the natural decadal variability (that is, the
Pacific Decadal Oscillation has a period of 10-30 years (ref. 126) and
the Atlantic Multidecadal Oscillation has a period of 50-80 years (ref.
127)). Here multimodel ensemble strategies are considered because
different models can simulate different decadal variability*®: 23
models for temperature, 16 for salinity and 10 for dissolved oxygen
(Supplementary Table 1). The ‘climate drift’ (due to the model errors)
ineach modelis subtracted using a ‘quadratic’ polynomial regression
in each grid box following the suggestions of Cheng et al.*. In both
cases, the same ToE method was applied, with the only difference
being the signal definition and baseline choice. Following refs. 9,122,
the 95% emergence uncertainty range is represented by the spread of
the model (thatis, multimodel ensemble median and 2.5-97.5% range)

The results show that (1) for temperature, regionally, the ToE
difference in 2022 between Group A and Group B can be up to 2-4
(+3) years (with a 95% confidence level), with a global percentage
area difference of 0-4% (Supplementary Fig. 1); (2) for salinity, the
impact of the decadal variability can be up to 5 (+4) years and ~0-4%
difference for the global percentage area (Supplementary Fig. 2); (3)
for dissolved oxygen, the impact can be up to 6 (+4) years and ~0-2%
(Supplementary Fig. 3). Spatially, the substantialimpactis distributed
mainly around the ‘key regions’ of Atlantic Multidecadal Oscillation
and Pacific Decadal Oscillation variability (for example, North Atlantic
Subtropical Gyre, North Central Pacific and the Southern Ocean). For
the worst cases, the impacts can be up to 6 (+4) years and 4% for the
global percentage emergence for temperature, salinity and dissolved
oxygen. We conclude that, although the decadal variability can intro-
duce asmall error to the ToE estimates, varying the LOWESS smooth-
ing windows from 25 up to 50 years and changing the baseline from
20 years to 50 years will not substantially change the estimates of the
ToE, and 25-year smoothing version and 30 years baseline (1960-1989)
isareasonable choice to detect the observed long-term change since
1960 in this study (given the relatively short observational record).
Nevertheless, thisuncertainty (referred toin this study as ‘uncertainty
duetodecadalvariability in the quantification of signal and the baseline
choice’) isadded to the sampling/mapping/instrumental uncertainty
previously defined to derive the total uncertainty of compound emer-
gence (Extended Data Fig. 8). By simply summing the two errors, we
do not assume that the two sources are independent, resulting in an
upper bound on the uncertainty estimate.

Extended Data Figs. 1-4 show the results of individual ToE (for
temperature, salinity, dissolved oxygen and surface pH, respectively)
from1960 to02023. We observe that alarge fraction of the global ocean
has already shifted to a new climate state compared with 40-60 years
ago, despite the climate background variability and observational
errors. Althoughwe are focusing onthe entire upper1,000 mof ocean
changes, sea surface changes are compared with previous investiga-
tions, showing that the spatial and temporal ToE patterns of surface
temperature, surface salinity and surface pH are consistent with the
previous publications!®!1*30121128

Robustness of the results on the choice of observational data
products

IAP data products are used as a central estimate of TOE of temperature/
salinity/dissolved oxygen mainly because (1) they provide consistent
uncertainty estimates for all variables, so the results are consistent for
allkeyvariables investigated in this study**'°*'°; (2) previous independ-
ent evaluations'”" indicate the IAP products are particularly robust
for long-term change studies despite the data quality and data sparsity
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issues. Here it is mandatory to test the robustness of the results for
independent products. For temperature and salinity, the Ishii tempera-
ture/salinity gridded product® is used, in which the data-gap filling,
bias correction and quality control schemes are different from the IAP
products. For dissolved oxygen, the Ito Dataset” is used, in which the
main differences of this product with IAP productis in mapping strate-
gies, datasources, data quality control, bias correction, and small-scale
and high-frequency variability analysing. For pH, the OceanSODA-ETHZ
satellite pH data product™ is also used to check the robustness. The
results of ToE for temperature, salinity, dissolved oxygen and surface
pHarerobustamong different observational products used (Extended
DataFigs.1and 5-7). More specifically, the medium- to high-exposure
regions (thatis, the North Atlantic Ocean, the tropical Atlantic Ocean,
the Mediterranean Sea and the Arabian Sea; Fig. 3) can be generally
identified by using the Ishii dataset for temperature and salinity, the
Ito dataset for dissolved oxygen and the OceanSODA-ETHZ dataset
for surface pH.

The compound CID emergence and its uncertainty estimation
The methods for determining the compound CID emergence (that
is, double emergence and triple emergence) have briefly been dis-
cussed in the main text (Box 1). The overall ToE uncertainty of com-
pound CIDs is estimated using a Monte Carlo approach™ (shown in
Extended Data Fig. 8). In detail, in each Monte Carlo simulation, we
randomly select one member from each individual CID, and then we
define the double and triple emergence regions for each simulation
following the approach showninBox 1. This process isrepeated 3,500
times for double CIDs and 80,000 times for triple CIDs to generate a
set of realizations with different emergence directions (for example,
only warming emergence, only salinization emergence, both warm-
ing and salinization emergence, no emergence). These Monte Carlo
simulations of different variables are combined to provide an ensemble
for double emergence and triple emergence separately. To determine
the confidence interval on the basis of these ensembles, we follow the
approachofref.122, asshownin Supplementary Fig. 13, with the Monte
Carlo realizations. Then the ‘significant double emergence’ and ‘sig-
nificant triple emergence’ regions (for example, significant warming
and salinization) are represented by the median year with ToE and the
95% uncertainty range across all realizations.

Definitions and calculations of duration, intensity and
magnitude of emergence and the resulting exposure
The intensity of emergence for individual CIDs is defined as how
strongly the signal has been changed since it emerged from the back-
ground noise, quantified by the SNR in 2023 (that is, represented by
theinterceptin panel a of the figure in Box 1). Duration of emergence
forindividual CIDs is defined as how long the signal has been changed
sinceitemerged from the noise (that s, the persistence of emergence),
quantified by the difference between 2023 and its time of emergence
(thatis, 2023-ToE). The unitis the year. The magnitude of emergence
forindividual CIDs is defined as how fast the signal has been changed
since it emerged from the noise, quantified by its linear trend (linear
regression; represented by the slope in panel a of the figure in Box 1).
The units are °C decade™ for temperature, PSU decade™ for salinity,
pmol kg™ decade™ for dissolved oxygen and pH units decade™ for
surface pH. Here the magnitude refers to the rate of signal change and
canbejointly determined by the duration and intensity of emergence.
Therefore, magnitudeisafunction of duration and intensity (see panel
aofthefigurein Box 1; these three terms correspond to the threesides
ofthe triangle, which can be explained by the Pythagorean Theorem).
These three metrics are quantifiedineach1°box at each standard
depthlevel onthebasis of adatadistribution approach (see panel b of
the figure in Box 1). In detail, following previous studies of individual
CIDs"*"** we first normalized all these metrics to values between 0 and
1.Second, the values of eachmetric are divided into three groups—high

(long), medium and low (short)—based on its probability density distri-
bution. The threshold between high and medium is set to the median
plus one median absolute deviation. The threshold between medium
and low (short) is set to zero (equal to zero denotes ‘no emergence’),
indicating the regions of no emergence. Specifically, for surface pH,
the threshold between high and medium is set as the fifth percentile.
For the definitions of duration, intensity and magnitude of compound
CID emergence, the high (long), medium and low (short) categories are
defined on the basis of the individual CIDs (Supplementary Table 2).
The results are shown in Supplementary Fig. 4 and discussed in sec-
tion D of the Supplementary Information. Finally, ocean exposure
(three categories: high, medium, low) to the long-term compound
CIDs is then defined on the basis of the three metrics: duration of
emergence, intensity of emergence and magnitude of emergence.
Here ‘high exposure’refers to asituation where at least two of the above
three metrics are ‘high’, and ‘low exposure’ refers to a situation where
atleasttwo of the three metrics are ‘low’, while the ‘medium exposure’
refers to the remaining situations (see panel ¢ of figure in Box 1 and
Supplementary Table 2). Itisimportant to note that our focusis not on
exposure attribution, exposure for risk assessment, studies of exposed
specific marine species or populations, or studies of marine ecosystem
impacts from the emergence of compound CIDs (that is, compound
effects). Instead, we use a general approach to investigate and under-
stand how the global ocean is exposed to long-term compound CIDs,
establishing a connection between the oceanic physical science basis
and their climate change impacts.

Sensitivity of SNR choice

In this study, two types of uncertainties/confidences are presented: (1)
theuncertainty range arising from ensemble members of the data prod-
ucts (Extended DataFig. 9 and Supplementary Fig.13) and (2) the con-
fidence level associated with the SNR threshold in the ToE definition.
Therobustness of the confidence level due to varying SNR thresholds
corresponds to the confidence level of the estimated short-term vari-
ability (ISNR| > 1= 67% confidence, |SNR| > 2 = 95% confidence'??). Here
we examined how varying the SNR threshold affects the identification
of emergence. Increasing the [SNR| threshold to 2 reduces the area of
emergence before 2023 (red dots in Fig. 2). However, this change does
not alter the spatial patterns or the identification of key compound
climate change hotspots (that is, high exposure regions; Fig. 3). There-
fore, adjustingthe SNR threshold does notimpact the overall narrative
as the higher threshold is simply more conservative'?. Both |SNR| > 1
and |SNR| > 2 thresholds are used in the literature®*'*"'2>3* each with
its own caveats: |SNR| > 1 corresponds to a 67% confidence level of the
estimated short-term variability defined by noise, which may include
someregions affected by short-termvariability; [SNR| > 2 corresponds
to a95% confidence level of that emergence but may be too conserva-
tive, potentially missing early changes given the limited observational
record (starting ~-1960). Presenting both levels of confidence ensures
transparency and allows us to capture a wider distribution of pos-
sible emergences (Figs. 2 and 3). In addition, we note that most of the
‘high-exposure’ regions identified in this study (dark brown, green
and purpleinFig.3) have |SNR| > 2, indicating that this more-stringent
threshold is already incorporated into our exposure definitions. Spe-
cifically, high exposure is determined by the intensity, duration and
magnitude of emergence (see panel cof the figurein Box 1), where high
intensity typically corresponds to |SNR| values greater than 2.

Data availability

The data used to capture and monitor compound ocean state
changes using ToE and exposure metrics (Figs. 2 and 3; we named it
the “IAP compound CIDs dataset”) in this study is available at http://
www.ocean.iap.ac.cn/ftp/cheng/Compound_CIDs/ (with providing
some visualizing codes for policymakers or climate services). The
IAP (Institute of Atmospheric Physics) temperature gridded product
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(version4)isavailable at https://doi.org/10.12157/I0CAS.20240117.002
and http://www.ocean.iap.ac.cn/ftp/cheng/IAPv4.2_IAP_Tempera-
ture_gridded_Imonth_netcdf/. The IAP salinity gridded product is
available at http://www.ocean.iap.ac.cn/ftp/cheng/CZ16_vO_IAP_
Salinity_gridded_lmonth_netcdf/. The IAP dissolved oxygen grid-
ded product is available at http://www.ocean.iap.ac.cn/ftp/cheng/
IAP_vO_Ocean_Oxygen_gridded_1deg 0_6000m_dataset/ and http://
www.ocean.iap.ac.cn/ftp/cheng/IAP_oxygen_profile_dataset/. The
Global Upper Ocean Dissolved Oxygen Anomaly Dataset (version 2) is
availableat https://www.bco-dmo.org/dataset/816978. The Copernicus
Marine Service—Global Ocean Surface Carbon product is available at
https://doi.org/10.48670/moi-00047. The OceanSODA-ETHZ product
isavailable at https://doi.org/10.25921/m5wx-ja34. The Ishii tempera-
ture and salinity products are available at https://climate.mri-jma.
go.jp/pub/ocean/ts/v7.3.1.

Code availability

The codes to reproduce the main text figures can be accessed via the
Code Ocean': https://doi.org/10.24433/C0.6650239.v1 or http://www.
ocean.iap.ac.cn/ftp/cheng/Compound_CIDs/.
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Extended Data Table 1] A list of the observational datasets used in our study for temperature, salinity, dissolved oxygen, and
surface pH

CIDs Dataset Datatype Time coverage Spatial coverage Resolution

IAP temperature gridded data (version 4)'°° in situ 1960-2023 Global, 0-6000m 1-degree; monthly
Temperature

Ishii temperature gridded data® in situ 1960-2022 Global, 0-3000m 1-degree; monthly

| IAP salinity gridded data® in situ 1960-2023 Global, 0-2000m 1-degree; monthly

Salinity

Ishii salinity gridded data®® in situ 1960-2022 Global, 0-3000m 1-degree; monthly

IAP oxygen gridded data™" in situ 1960-2022 Global, 0-6000m 1-degree; monthly
Dissolved oxygen Global Upper Ocean Dissolved Oxygen in situ 1965-2015 Global, 0-6000m 1-degree; monthly

Anomaly Dataset (version 2)*’

(1) OceanSODA-ETHZ""® satellite 1985-2020 Global, surface only 1-degree; monthly
pH

(2) CMEMS: Global Ocean Surface Carbon™  satellite 1985-2021 Global, surface only 0.25-degree; monthly
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a Copernicus: Global Ocean Surface Carbon b OceanSODA-ETHZ
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Extended Data Fig. 1| The ToE (unit: year) of surface pH using different represented by the data uncertainty (see Methods). The reference period
observational-based products. (a) Copernicus: Global Ocean Surface Carbon'” (baseline) is1985-1989. The polar regions (beyond 60 N and 60S) are not
and (b) Ocean SODA-ETHZ product™. Only acidification emergence is shown. examined due to lack of data. Basemap generated with M_Map (www.eoas.ubc.
(c)isthe same as (a) and (b) but shows the global percentage of emergence ca/-rich/map.html).

asafunction of the year, with the shading indicating the uncertainty range
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Extended Data Fig. 2| The temperature ToE (unit: year) in different layers

using the IAP temperature gridded product'®. (a) surface, (b) epipelagic zone
(0-200 m), and (c) mesopelagic zone (200-1000 m). Two emergence directions
areindicated (red: warming emergence; blue: cooling emergence). Here, [SNR| > 1

threshold is used to calculate the ToE. The white color indicates no emergence

before 2023. Areas with insignificant emergence before 2023 (definitions see the

Year

Extended Data Fig. 9) are marked as black dots. (d) is the same as (a-c) but shows
the global percentage area of emergence as a function of the year with the shaded
areas representing the data uncertainty arising from ensemble members of the
data products (see Methods). Here, the reference period (baseline) is 1960-1979.
The polar regions (beyond 70 N and 70S) are not examined due to lack of data.
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Extended DataFig. 3| The same as Extended DataFig. 2, but for the salinity ToE (unit: year) in different layers by using the IAP salinity gridded product*°.
(a) surface, (b) epipelagic zone (0-200 m), and (c) mesopelagic zone (200-1000 m).
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Extended Data Fig. 4| The same as Extended Data Fig. 2, but for the dissolved oxygen ToE (unit: year) in different layers by using the IAP dissolved oxygen gridded
product™'2, (a) epipelagic zone (0-200 m) and (b) mesopelagic zone (200-1000 m).
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Extended Data Fig. 5| The temperature ToE (unit: year) in different layers same as (a-c) but shows the global percentage area of emergence as a function
using the Ishii temperature gridded product®® (version7.3.1). (a) surface, of the year, with overlapping the IAP temperature grid product for comparisons
(b) epipelagic zone (0-200 m), and (c) mesopelagic zone (200-1000 m). Two (transparent areas, same as Extended Data Fig. 2d). Here, the reference period
emergence directions areindicated (red: warming emergence; blue: cooling (baseline) is1960-1979. The polar regions (beyond 70 N and 70S) are not
emergence). The white color indicates no emergence before 2022. (d) is the examined due to lack of data.
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Extended Data Fig. 6 | The same as Extended Data Fig. 5, but using the Ishii salinity product’® (version 7.3.1). Here, two emergence directions are indicated
(red: salinization emergence; blue: freshening emergence).
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Extended DataFig. 7| The ToE (unit: year) of dissolved oxygen in different
layers using the Ito dataset® compared with the IAP dissolved oxygen
product™"2, (a) and (c) is for the epipelagic zone (0-200 m) and mesopelagic
zone (200-1000 m) in the Ito dataset. (b) and (d) are the same as in (a) and (c) but
using the IAP dataset. Two emergence directions are indicated (red: oxygenation
emergence; blue: deoxygenation emergence). White indicates no emergence

before 2015. (e-f) is the global percentage of emergence as a function of year

and depth. Here, the error bars in (e-f) denote the 95% confidence interval. The
investigated period is1965-2015, and the reference period (baseline) is 1965-1979
(Ito data) and 1960-1979 (IAP data). The polar regions (beyond 70 N and 70S) are
not examined due to the lack of data. More discussions of this figure are shown in
the Supplementary Information.
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